-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathmodels.tex
6708 lines (6272 loc) · 200 KB
/
models.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Semistable Reduction}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we prove the semistable reduction theorem for curves.
We will use the method of Artin and Winters from their paper
\cite{Artin-Winters}.
\medskip\noindent
It turns out that one can prove the semistable reduction theorem
for curves without any results on desingularization. Namely, there
is a way to establish the existence and projectivity of moduli
of semistable curves using Geometric Invariant Theory (GIT)
as developed by Mumford, see \cite{GIT}. This method was
championed by Gieseker who proved the full result in his
lecture notes \cite{Gieseker}\footnote{Gieseker's lecture notes
are written over an algebraically closed field, but the same method
works over $\mathbf{Z}$.}. This is quite an amazing
feat: it seems somewhat counter intuitive that one can
prove such a result without ever truly studying families of curves over
a positive dimensional base.
\medskip\noindent
Historically the first proof of the semistable reduction theorem
for curves can be found in the paper \cite{DM} by Deligne and Mumford.
It proves the theorem by reducing the problem to the case of
Abelian varieties which was already known at the time thanks
to Grothendieck and others, see \cite{SGA7-I} and \cite{SGA7-II}).
The semistable reduction theorem for abelian varieties uses the theory
of N\'eron models which in turn rests on a treatment of birational
group laws over a base.
\medskip\noindent
The method in the paper by Artin and Winters relies on desingularization
of singularities of surfaces to obtain regular models. Given the existence
of regular models, the proof consists in analyzing the
possibilities for the special fibre and concluding using an inequality
for torsion in the Picard group of a $1$-dimensional scheme over a field.
A similar argument can be found in a paper \cite{Saito} of Saito who uses
\'etale cohomology directly and who obtains a stronger result in that
he can characterize semistable reduction in terms of the action of
the inertia on $\ell$-adic \'etale cohomology.
\medskip\noindent
A different approach one can use to prove the theorem is to use
rigid analytic geometry techniques. Here we refer the reader to
\cite{vanderPut} and \cite{Arzdorf-Wewers}.
\medskip\noindent
The paper \cite{Temkin} by Temkin uses valuation theoretic techniques
(and proves a lot more besides); also Appendix A of this paper gives
a nice overview of the different proofs and the relationship with
desingularizations of $2$ dimensional schemes.
\medskip\noindent
Another overview paper that the reader may wish to consult is
\cite{Abbes-ssr} written by Ahmed Abbes.
\section{Linear algebra}
\label{section-linear-algebra}
\noindent
A couple of lemmas we will use later on.
\begin{lemma}
\label{lemma-recurring}
\begin{reference}
\cite[Theorem I]{Taussky}
\end{reference}
Let $A = (a_{ij})$ be a complex $n \times n$ matrix.
\begin{enumerate}
\item If $|a_{ii}| > \sum_{j \not = i} |a_{ij}|$ for each $i$, then
$\det(A)$ is nonzero.
\item If there exists a real vector $m = (m_1, \ldots, m_n)$
with $m_i > 0$ such that $|a_{ii} m_i| > \sum_{j \not = i} |a_{ij}m_j|$
for each $i$, then $\det(A)$ is nonzero.
\end{enumerate}
\end{lemma}
\begin{proof}
If $A$ is as in (1) and $\det(A) = 0$, then there is a nonzero vector
$z$ with $Az = 0$. Choose $r$ with $|z_r|$ maximal. Then
$$
|a_{rr} z_r| = |\sum\nolimits_{k \not = r} a_{rk}z_k| \leq
\sum\nolimits_{k \not = r} |a_{rk}||z_k| \leq
|z_r| \sum\nolimits_{k \not = r} |a_{rk}| < |a_{rr}||z_r|
$$
which is a contradiction. To prove (2) apply (1) to the matrix
$(a_{ij}m_j)$ whose determinant is $m_1 \ldots m_n \det(A)$.
\end{proof}
\begin{lemma}
\label{lemma-recurring-real}
Let $A = (a_{ij})$ be a real $n \times n$ matrix with
$a_{ij} \geq 0$ for $i \not = j$. Let $m = (m_1, \ldots, m_n)$ be a real
vector with $m_i > 0$. For $I \subset \{1, \ldots, n\}$ let
$x_I \in \mathbf{R}^n$
be the vector whose $i$th coordinate is $m_i$ if $i \in I$
and $0$ otherwise. If
\begin{equation}
\label{equation-ineq}
-a_{ii}m_i \geq \sum\nolimits_{j \not = i} a_{ij}m_j
\end{equation}
for each $i$, then $\Ker(A)$ is the vector space
spanned by the vectors $x_I$ such that
\begin{enumerate}
\item $a_{ij} = 0$ for $i \in I$, $j \not \in I$, and
\item equality holds in (\ref{equation-ineq}) for $i \in I$.
\end{enumerate}
\end{lemma}
\begin{proof}
After replacing $a_{ij}$ by $a_{ij}m_j$ we may assume $m_i = 1$ for all $i$.
If $I \subset \{1, \ldots, n\}$ such that (1) and (2) are true,
then a simple computation shows that $x_I$ is in the kernel of $A$.
Conversely, let $x = (x_1, \ldots, x_n) \in \mathbf{R}^n$ be a
nonzero vector in the kernel of $A$. We will show by induction
on the number of nonzero coordinates of $x$ that $x$ is in the
span of the vectors $x_I$ satisfying (1) and (2). Let
$I \subset \{1, \ldots, n\}$ be the set of indices $r$ with $|x_r|$ maximal.
For $r \in I$ we have
$$
|a_{rr} x_r| = |\sum\nolimits_{k \not = r} a_{rk}x_k| \leq
\sum\nolimits_{k \not = r} a_{rk}|x_k| \leq
|x_r| \sum\nolimits_{k \not = r} a_{rk} \leq |a_{rr}||x_r|
$$
Thus equality holds everywhere. In particular, we see that
$a_{rk} = 0$ if $r \in I$, $k \not \in I$ and equality holds
in (\ref{equation-ineq}) for $r \in I$. Then we see that we
can subtract a suitable multiple of $x_I$ from $x$ to decrease
the number of nonzero coordinates.
\end{proof}
\begin{lemma}
\label{lemma-recurring-symmetric-real}
Let $A = (a_{ij})$ be a symmetric real $n \times n$ matrix with
$a_{ij} \geq 0$ for $i \not = j$.
Let $m = (m_1, \ldots, m_n)$ be a real vector with $m_i > 0$.
Assume
\begin{enumerate}
\item $Am = 0$,
\item there is no proper nonempty subset $I \subset \{1, \ldots, n\}$
such that $a_{ij} = 0$ for $i \in I$ and $j \not \in I$.
\end{enumerate}
Then $x^t A x \leq 0$ with equality if and only if $x = qm$
for some $q \in \mathbf{R}$.
\end{lemma}
\begin{proof}[First proof]
After replacing $a_{ij}$ by $a_{ij}m_im_j$ we may assume $m_i = 1$
for all $i$. Condition (1) means $-a_{ii} = \sum_{j \not = i} a_{ij}$
for all $i$. Recall that $x^tAx = \sum_{i, j} x_ia_{ij}x_j$.
Then
\begin{align*}
\sum\nolimits_{i \not = j} -a_{ij}(x_j - x_i)^2 & =
\sum\nolimits_{i \not = j} -a_{ij}x_j^2 + 2a_{ij}x_ix_i - a_{ij}x_i^2 \\
& =
\sum\nolimits_j a_{jj} x_j^2 +
\sum\nolimits_{i \not = j} 2a_{ij}x_ix_i +
\sum\nolimits_j a_{jj} x_i^2 \\
& = 2x^tAx
\end{align*}
This is clearly $\leq 0$. If equality holds, then let $I$ be the set
of indices $i$ with $x_i \not = x_1$. Then $a_{ij} = 0$ for $i \in I$
and $j \not \in I$. Thus $I = \{1, \ldots, n\}$ by condition (2) and
$x$ is a multiple of $m = (1, \ldots, 1)$.
\end{proof}
\begin{proof}[Second proof]
The matrix $A$ has real eigenvalues by the spectral theorem.
We claim all the eigenvalues are $\leq 0$.
Namely, since property (1) means
$-a_{ii}m_i = \sum_{j \not = i} a_{ij}m_j$ for all $i$,
we find that the matrix $A' = A - \lambda I$ for $\lambda > 0$
satisfies $|a'_{ii}m_i| > \sum a'_{ij}m_j = \sum |a'_{ij}m_j|$ for all $i$.
Hence $A'$ is invertible by Lemma \ref{lemma-recurring}.
This implies that the symmetric bilinear form $x^tAy$
is semi-negative definite, i.e., $x^tAx \leq 0$ for all $x$.
It follows that the kernel of $A$ is equal
to the set of vectors $x$ with $x^tAx = 0$.
The description of the kernel in Lemma \ref{lemma-recurring-real}
gives the final statement of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-orthogonal-direct-sum}
Let $L$ be a finite free $\mathbf{Z}$-module endowed
with an integral symmetric bilinear positive definite
form $\langle\ ,\ \rangle : L \times L \to \mathbf{Z}$.
Let $A \subset L$ be a submodule with $L/A$ torsion free. Set
$B = \{b \in L \mid \langle a, b\rangle = 0,\ \forall a \in A\}$.
Then we have injective maps
$$
A^\#/A \leftarrow L/(A \oplus B) \rightarrow B^\#/B
$$
whose cokernels are quotients of $L^\#/L$. Here
$A^\# = \{a' \in A \otimes \mathbf{Q} \mid
\langle a, a'\rangle \in \mathbf{Z},\ \forall a \in A\}$
and similarly for $B$ and $L$.
\end{lemma}
\begin{proof}
Observe that
$L \otimes \mathbf{Q} = A \otimes \mathbf{Q} \oplus B \otimes \mathbf{Q}$
because the form is nondegenerate on $A$ (by positivity).
We denote $\pi_B : L \otimes \mathbf{Q} \to B \otimes \mathbf{Q}$
the projection. Observe that $\pi_B(x) \in B^\#$ for $x \in L$
because the form is integral. This gives an exact sequence
$$
0 \to A \to L \xrightarrow{\pi_B} B^\# \to Q \to 0
$$
where $Q$ is the cokernel of $L \to B^\#$. Observe that $Q$
is a quotient of $L^\#/L$ as the map $L^\# \to B^\#$ is surjective
since it is the $\mathbf{Z}$-linear dual to $B \to L$ which is split
as a map of $\mathbf{Z}$-modules.
Dividing by $A \oplus B$ we get a short exact sequence
$$
0 \to L/(A \oplus B) \to B^\#/B \to Q \to 0
$$
This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-coker}
Let $L_0$, $L_1$ be a finite free $\mathbf{Z}$-modules endowed
with integral symmetric bilinear positive definite
forms $\langle\ ,\ \rangle : L_i \times L_i \to \mathbf{Z}$.
Let $\text{d} : L_0 \to L_1$ and $\text{d}^* : L_1 \to L_0$
be adjoint. If $\langle\ ,\ \rangle$ on $L_0$ is unimodular, then
there is an isomorphism
$$
\Phi :
\Coker(\text{d}^*\text{d})_{torsion}
\longrightarrow
\Im(\text{d})^\#/\Im(\text{d})
$$
with notation as in Lemma \ref{lemma-orthogonal-direct-sum}.
\end{lemma}
\begin{proof}
Let $x \in L_0$ be an element representing a torsion
class in $\Coker(\text{d}^*\text{d})$.
Then for some $a > 0$ we can write $ax = \text{d}^*\text{d}(y)$.
For any $z \in \Im(\text{d})$, say $z = \text{d}(y')$, we have
$$
\langle (1/a)\text{d}(y), z \rangle =
\langle (1/a)\text{d}(y), \text{d}(y') \rangle =
\langle x, y' \rangle \in \mathbf{Z}
$$
Hence $(1/a)\text{d}(y) \in \Im(\text{d})^\#$. We define
$\Phi(x) = (1/a)\text{d}(y) \bmod \Im(\text{d})$.
We omit the proof that $\Phi$ is well defined, additive, and injective.
\medskip\noindent
To prove $\Phi$ is surjective, let $z \in \Im(\text{d})^\#$.
Then $z$ defines a linear map $L_0 \to \mathbf{Z}$
by the rule $x \mapsto \langle z, \text{d}(x)\rangle$.
Since the pairing on $L_0$ is unimodular by assumption
we can find an $x' \in L_0$ with
$\langle x', x \rangle = \langle z, \text{d}(x)\rangle$
for all $x \in L_0$. In particular, we see
that $x'$ pairs to zero with $\Ker(\text{d})$.
Since $\Im(\text{d}^*\text{d}) \otimes \mathbf{Q}$
is the orthogonal complement of $\Ker(\text{d}) \otimes \mathbf{Q}$
this means that $x'$ defines a torsion class in
$\Coker(\text{d}^*\text{d})$. We claim that $\Phi(x') = z$.
Namely, write $a x' = \text{d}^*\text{d}(y)$
for some $y \in L_0$ and $a > 0$.
For any $x \in L_0$ we get
$$
\langle z, \text{d}(x)\rangle =
\langle x', x \rangle =
\langle (1/a)\text{d}^*\text{d}(y), x \rangle =
\langle (1/a)\text{d}(y),\text{d}(x) \rangle
$$
Hence $z = \Phi(x')$ and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-recurring-symmetric-integer}
Let $A = (a_{ij})$ be a symmetric $n \times n$ integer matrix with
$a_{ij} \geq 0$ for $i \not = j$. Let $m = (m_1, \ldots, m_n)$ be an
integer vector with $m_i > 0$. Assume
\begin{enumerate}
\item $Am = 0$,
\item there is no proper nonempty subset $I \subset \{1, \ldots, n\}$
such that $a_{ij} = 0$ for $i \in I$ and $j \not \in I$.
\end{enumerate}
Let $e$ be the number of pairs $(i, j)$ with $i < j$ and $a_{ij} > 0$.
Then for $\ell$ a prime number coprime with all $a_{ij}$ and $m_i$
we have
$$
\dim_{\mathbf{F}_\ell}(\Coker(A)[\ell]) \leq 1 - n + e
$$
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-recurring-symmetric-real} the rank of $A$ is $n - 1$.
The composition
$$
\mathbf{Z}^{\oplus n} \xrightarrow{\text{diag}(m_1, \ldots, m_n)}
\mathbf{Z}^{\oplus n} \xrightarrow{(a_{ij})}
\mathbf{Z}^{\oplus n} \xrightarrow{\text{diag}(m_1, \ldots, m_n)}
\mathbf{Z}^{\oplus n}
$$
has matrix $a_{ij}m_im_j$. Since the cokernel of the first and last
maps are torsion of order prime to $\ell$ by our restriction on $\ell$
we see that it suffices to prove the lemma for the matrix
with entries $a_{ij}m_im_j$. Thus we may assume $m = (1, \ldots, 1)$.
\medskip\noindent
Assume $m = (1, \ldots, 1)$. Set $V = \{1, \ldots, n\}$ and
$E = \{(i, j) \mid i < j\text{ and }a_{ij} > 0\}$. For
$e = (i, j) \in E$ set $a_e = a_{ij}$. Define maps
$s, t : E \to V$ by setting $s(i, j) = i$ and $t(i, j) = j$.
Set
$\mathbf{Z}(V) = \bigoplus_{i \in V} \mathbf{Z}i$ and
$\mathbf{Z}(E) = \bigoplus_{e \in E} \mathbf{Z}e$.
We define symmetric positive definite integer valued pairings
on $\mathbf{Z}(V)$ and $\mathbf{Z}(E)$ by setting
$$
\langle i, i \rangle = 1\text{ for }i \in V, \quad
\langle e, e \rangle = a_e\text{ for }e \in E
$$
and all other pairings zero. Consider the maps
$$
\text{d} : \mathbf{Z}(V) \to \mathbf{Z}(E), \quad
i \longmapsto
\sum\nolimits_{e \in E,\ s(e) = i} e - \sum\nolimits_{e \in E,\ t(e) = i} e
$$
and
$$
\text{d}^*(e) = a_e(s(e) - t(e))
$$
A computation shows that
$$
\langle d(x), y\rangle = \langle x, \text{d}^*(y) \rangle
$$
in other words, $\text{d}$ and $\text{d}^*$ are adjoint. Next we compute
\begin{align*}
\text{d}^*\text{d}(i)
& =
\text{d}^*(
\sum\nolimits_{e \in E,\ s(e) = i} e - \sum\nolimits_{e \in E,\ t(e) = i} e) \\
& =
\sum\nolimits_{e \in E,\ s(e) = i} a_e(s(e) - t(e)) -
\sum\nolimits_{e \in E,\ t(e) = i} a_e(s(e) - t(e))
\end{align*}
The coefficient of $i$ in $\text{d}^*\text{d}(i)$ is
$$
\sum\nolimits_{e \in E,\ s(e) = i} a_e +
\sum\nolimits_{e \in E,\ t(e) = i} a_e = - a_{ii}
$$
because $\sum_j a_{ij} = 0$ and the coefficient of
$j \not = i$ in $\text{d}^*\text{d}(i)$ is $-a_{ij}$.
Hence $\Coker(A) = \Coker(\text{d}^*\text{d})$.
\medskip\noindent
Consider the inclusion
$$
\Im(\text{d}) \oplus \Ker(\text{d}^*) \subset \mathbf{Z}(E)
$$
The left hand side is an orthogonal direct sum. Clearly
$\mathbf{Z}(E)/\Ker(\text{d}^*)$ is torsion free.
We claim $\mathbf{Z}(E)/\Im(\text{d})$ is torsion free as well.
Namely, say $x = \sum x_e e \in \mathbf{Z}(E)$ and $a > 1$ are such
that $ax = \text{d}y$ for some $y = \sum y_i i \in \mathbf{Z}(V)$.
Then $a x_e = y_{s(e)} - y_{t(e)}$. By property (2) we conclude
that all $y_i$ have the same congruence class modulo $a$.
Hence we can write $y = a y' + (y_1, y_1, \ldots, y_1)$.
Since $\text{d}(y_1, y_1, \ldots, y_1) = 0$ we conclude
that $x = \text{d}(y')$ which is what we had to show.
\medskip\noindent
Hence we may apply Lemma \ref{lemma-orthogonal-direct-sum}
to get injective maps
$$
\Im(\text{d})^\#/\Im(\text{d}) \leftarrow
\mathbf{Z}(E)/(\Im(\text{d}) \oplus \Ker(\text{d}^*)) \rightarrow
\Ker(\text{d}^*)^\#/\Ker(\text{d}^*)
$$
whose cokernels are annihilated by the product of the $a_e$
(which is prime to $\ell$). Since $\Ker(\text{d}^*)$ is
a lattice of rank $1 - n + e$ we see that the proof is complete
if we prove that there exists an isomorphism
$$
\Phi : M_{torsion} \longrightarrow \Im(\text{d})^\#/\Im(\text{d})
$$
This is proved in Lemma \ref{lemma-coker}.
\end{proof}
\section{Numerical types}
\label{section-numerical-types}
\noindent
Part of the arguments will involve the combinatorics of the following
data structures.
\begin{definition}
\label{definition-type}
A {\it numerical type} $T$ is given by
$$
n, m_i, a_{ij}, w_i, g_i
$$
where $n \geq 1$ is an integer and $m_i$, $a_{ij}$, $w_i$, $g_i$
are integers for $1 \leq i, j \leq n$ subject to the following conditions
\begin{enumerate}
\item $m_i > 0$, $w_i > 0$, $g_i \geq 0$,
\item the matrix $A = (a_{ij})$ is symmetric and $a_{ij} \geq 0$
for $i \not = j$,
\item there is no proper nonempty subset $I \subset \{1, \ldots, n\}$
such that $a_{ij} = 0$ for $i \in I$, $j \not \in I$,
\item for each $i$ we have $\sum_j a_{ij}m_j = 0$, and
\item $w_i | a_{ij}$.
\end{enumerate}
\end{definition}
\noindent
This is obviously a somewhat annoying type of structure to work with,
but it is exactly what shows up in special fibres of proper regular
models of smooth geometrically connected curves.
Of course we only care about these types up to reordering the indices.
\begin{definition}
\label{definition-type-equivalent}
We say two numerical types $n, m_i, a_{ij}, w_i, g_i$ and
$n', m'_i, a'_{ij}, w'_i, g'_i$ are {\it equivalent types} if
there exists a permutation $\sigma$ of $\{1, \ldots, n\}$
such that $m_i = m'_{\sigma(i)}$, $a_{ij} = a'_{\sigma(i)\sigma(j)}$,
$w_i = w'_{\sigma(i)}$, and $g_i = g'_{\sigma(i)}$.
\end{definition}
\noindent
A numerical type has a genus.
\begin{lemma}
\label{lemma-genus}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type. Then the expression
$$
g = 1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})
$$
is an integer.
\end{lemma}
\begin{proof}
To prove $g$ is an integer we have to show that $\sum a_{ii}m_i$ is even.
This we can see by computing modulo $2$ as follows
\begin{align*}
\sum\nolimits_i a_{ii} m_i
& \equiv
\sum\nolimits_{i,\ m_i\text{ odd}} a_{ii}m_i \\
& \equiv
\sum\nolimits_{i,\ m_i\text{ odd}} \sum\nolimits_{j \not = i} a_{ij}m_j \\
& \equiv
\sum\nolimits_{i,\ m_i\text{ odd}}
\sum\nolimits_{j \not = i,\ m_j\text{ odd}} a_{ij}m_j \\
& \equiv
\sum\nolimits_{i < j,\ m_i\text{ and }m_j\text{ odd}} a_{ij}(m_i + m_j) \\
& \equiv
0
\end{align*}
where we have used that $a_{ij} = a_{ji}$ and that $\sum_j a_{ij}m_j = 0$
for all $i$.
\end{proof}
\begin{definition}
\label{definition-genus}
We say $n, m_i, a_{ij}, w_i, g_i$ is a {\it numerical type of genus $g$}
if $g = 1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$ is the integer
from Lemma \ref{lemma-genus}.
\end{definition}
\noindent
We will prove below (Lemma \ref{lemma-genus-nonnegative}) that the genus
is almost always $\geq 0$. But you can have numerical types with
negative genus.
\begin{lemma}
\label{lemma-irreducible}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
If $n = 1$, then $a_{11} = 0$ and $g = 1 + m_1w_1(g_1 - 1)$.
Moreover, we can classify all such numerical types as follows
\begin{enumerate}
\item If $g < 0$, then $g_1 = 0$ and there are finitely many possible
numerical types of genus $g$ with $n = 1$ corresponding to factorizations
$m_1w_1 = 1 - g$.
\item If $g = 0$, then $m_1 = 1$, $w_1 = 1$, $g_1 = 0$
as in Lemma \ref{lemma-genus-zero}.
\item If $g = 1$, then we conclude $g_1 = 1$ but $m_1, w_1$ can be arbitrary
positive integers; this is case
(\ref{item-one}) of Lemma \ref{lemma-genus-one}.
\item If $g > 1$, then $g_1 > 1$ and there are finitely many possible
numerical types of genus $g$ with $n = 1$ corresponding to
factorizations $m_1w_1(g_1 - 1) = g - 1$.
\end{enumerate}
\end{lemma}
\begin{proof}
The lemma proves itself.
\end{proof}
\begin{lemma}
\label{lemma-diagonal-negative}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
If $n > 1$, then $a_{ii} < 0$ for all $i$.
\end{lemma}
\begin{proof}
Lemma \ref{lemma-recurring-symmetric-real} applies to the matrix $A$.
\end{proof}
\begin{lemma}
\label{lemma-minus-one}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
Assume $n > 1$. If $i$ is such that the contribution
$m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$
to the genus $g$ is $< 0$, then $g_i = 0$ and $a_{ii} = -w_i$.
\end{lemma}
\begin{proof}
Follows immediately from Lemma \ref{lemma-diagonal-negative} and
$w_i > 0$, $g_i \geq 0$, and $w_i | a_{ii}$.
\end{proof}
\begin{definition}
\label{definition-type-minus-one}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type.
We say $i$ is a {\it $(-1)$-index} if $g_i = 0$ and $a_{ii} = -w_i$.
\end{definition}
\noindent
We can ``contract'' $(-1)$-indices.
\begin{lemma}
\label{lemma-contract}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$.
Assume $n$ is a $(-1)$-index. Then there is a numerical
type $T'$ given by $n', m'_i, a'_{ij}, w'_i, g'_i$ with
\begin{enumerate}
\item $n' = n - 1$,
\item $m'_i = m_i$,
\item $a'_{ij} = a_{ij} - a_{in}a_{jn}/a_{nn}$,
\item $w'_i = w_i/2$ if $a_{in}/w_n$ even and $a_{in}/w_i$ odd
and $w'_i = w_i$ else,
\item $g'_i =
\frac{w_i}{w'_i}(g_i - 1) + 1 + \frac{a_{in}^2 - w_na_{in}}{2w'_iw_n}$.
\end{enumerate}
Moreover, we have $g = g'$.
\end{lemma}
\begin{proof}
Observe that $n > 1$ for example by Lemma \ref{lemma-irreducible}
and hence $n' \geq 1$. We check conditions (1) -- (5) of
Definition \ref{definition-type} for $n', m'_i, a'_{ij}, w'_i, g'_i$.
\medskip\noindent
Condition (1) is immediate.
\medskip\noindent
Condition (2). Symmetry of $A' = (a'_{ij})$ is immediate
and since $a_{nn} < 0$ by Lemma \ref{lemma-diagonal-negative}
we see that $a'_{ij} \geq a_{ij} \geq 0$ if $i \not = j$.
\medskip\noindent
Condition (3). Suppose that $I \subset \{1, \ldots, n - 1\}$ such that
$a'_{ii'} = 0$ for $i \in I$ and $i' \in \{1, \ldots, n - 1\} \setminus I$.
Then we see that for each $i \in I$ and $i' \in I'$ we have
$a_{in}a_{i'n} = 0$. Thus either $a_{in} = 0$ for all $i \in I$ and
$I \subset \{1, \ldots, n\}$ is a contradiction for property (3) for $T$,
or $a_{i'n} = 0$ for all $i' \in \{1, \ldots, n - 1\} \setminus I$
and $I \cup \{n\} \subset \{1, \ldots, n\}$ is a contradiction for
property (3) of $T$. Hence (3) holds for $T'$.
\medskip\noindent
Condition (4). We compute
$$
\sum\nolimits_{j = 1}^{n - 1} a'_{ij}m_j =
\sum\nolimits_{j = 1}^{n - 1}
(a_{ij}m_j - \frac{a_{in}a_{jn}m_j}{a_{nn}}) =
- a_{in}m_n - \frac{a_{in}}{a_{nn}}(-a_{nn}m_n) = 0
$$
as desired.
\medskip\noindent
Condition (5). We have to show that $w'_i$ divides $a_{in}a_{jn}/a_{nn}$.
This is clear because $a_{nn} = -w_n$ and $w_n | a_{jn}$ and $w_i | a_{in}$.
\medskip\noindent
To show that $g = g'$ we first write
\begin{align*}
g
& =
1 + \sum\nolimits_{i = 1}^n m_i(w_i(g_i - 1) - \frac{1}{2}a_{ii}) \\
& =
1 + \sum\nolimits_{i = 1}^{n - 1} m_i(w_i(g_i - 1) - \frac{1}{2}a_{ii})
-\frac{1}{2}m_nw_n \\
& =
1 + \sum\nolimits_{i = 1}^{n - 1}
m_i(w_i(g_i - 1) - \frac{1}{2}a_{ii} - \frac{1}{2}a_{in})
\end{align*}
Comparing with the expression for $g'$ we see that it suffices if
$$
w'_i(g'_i - 1) - \frac{1}{2}a'_{ii} =
w_i(g_i - 1) - \frac{1}{2}a_{in} - \frac{1}{2}a_{ii}
$$
for $i \leq n - 1$. In other words, we have
$$
g'_i = \frac{2w_i(g_i - 1) - a_{in} - a_{ii} + a'_{ii} + 2w'_i}{2w'_i} =
\frac{w_i}{w'_i}(g_i - 1) + 1 + \frac{a_{in}^2 - w_na_{in}}{2w'_iw_n}
$$
It is elementary to check that this is an integer $\geq 0$
if we choose $w'_i$ as in (4).
\end{proof}
\begin{lemma}
\label{lemma-top-genus}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type.
Let $e$ be the number of pairs $(i, j)$ with $i < j$ and $a_{ij} > 0$.
Then the expression $g_{top} = 1 - n + e$ is $\geq 0$.
\end{lemma}
\begin{proof}
If not, then $e < n - 1$ which means there exists an $i$ such that
$a_{ij} = 0$ for all $j \not = i$. This contradicts assumption
(3) of Definition \ref{definition-type}.
\end{proof}
\begin{definition}
\label{definition-top-genus}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$. The
{\it topological genus of $T$} is the nonnegative integer
$g_{top} = 1 - n + e$ from Lemma \ref{lemma-top-genus}.
\end{definition}
\noindent
We want to bound the genus by the topological genus. However, this
will not always be the case, for example for numerical types
with $n = 1$ as in Lemma \ref{lemma-irreducible}. But it will
be true for minimal numerical types which are defined as follows.
\begin{definition}
\label{definition-type-minimal}
We say the numerical type $n, m_i, a_{ij}, w_i, g_i$ of genus $g$
is {\it minimal} if there does not exist an $i$
with $g_i = 0$ and $a_{ii} = -w_i$, in other words, if there
does not exist a $(-1)$-index.
\end{definition}
\noindent
We will prove that the genus $g$ of a minimal type with $n > 1$
is greater than or equal to $\max(1, g_{top})$.
\begin{lemma}
\label{lemma-non-irreducible-minimal-type-genus-at-least-one}
If $n, m_i, a_{ij}, w_i, g_i$ is a minimal numerical type
with $n > 1$, then $g \geq 1$.
\end{lemma}
\begin{proof}
This is true because $g = 1 + \sum \Phi_i$ with
$\Phi_i = m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$ nonnegative
by Lemma \ref{lemma-minus-one} and the definition of minimal types.
\end{proof}
\begin{lemma}
\label{lemma-genus-nonnegative}
If $n, m_i, a_{ij}, w_i, g_i$ is a minimal numerical type
with $n > 1$, then $g \geq g_{top}$.
\end{lemma}
\begin{proof}
The reader who is only interested in the case of numerical types
associated to proper regular models can skip this proof as we will
reprove this in the geometric situation later.
We can write
$$
g_{top} = 1 - n + \frac{1}{2}\sum\nolimits_{a_{ij} > 0} 1 =
1 + \sum\nolimits_i (-1 +
\frac{1}{2}\sum\nolimits_{j \not = i,\ a_{ij} > 0} 1)
$$
On the other hand, we have
\begin{align*}
g & =
1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii}) \\
& =
1 + \sum m_iw_ig_i - \sum m_iw_i +
\frac{1}{2} \sum\nolimits_{i \not = j} a_{ij}m_j \\
& =
1 + \sum\nolimits_i
m_iw_i(-1 + g_i + \frac{1}{2} \sum\nolimits_{j \not = i} \frac{a_{ij}}{w_i})
\end{align*}
The first equality is the definition, the second equality uses that
$\sum a_{ij}m_j = 0$, and the last equality uses that
uses $a_{ij} = a_{ji}$ and switching order of
summation. Comparing with the formula for $g_{top}$ we conclude
that the lemma holds if
$$
\Psi_i =
m_iw_i(-1 + g_i + \frac{1}{2} \sum\nolimits_{j \not = i} \frac{a_{ij}}{w_i})
- (-1 + \frac{1}{2}\sum\nolimits_{j \not = i,\ a_{ij} > 0} 1)
$$
is $\geq 0$ for each $i$. However, this may not be the case.
Let us analyze for which indices we can have $\Psi_i < 0$.
First, observe that
$$
(-1 + g_i + \frac{1}{2}\sum\nolimits_{j \not = i} \frac{a_{ij}}{w_i}) \geq
(-1 + \frac{1}{2}\sum\nolimits_{j \not = i,\ a_{ij} > 0} 1)
$$
because $a_{ij}/w_i$ is a nonnegative integer. Since $m_iw_i$ is
a positive integer we conclude that $\Psi_i \geq 0$ as soon as
either $m_iw_i = 1$ or the left hand side of the inequality is $\geq 0$
which happens if $g_i > 0$, or $a_{ij} > 0$ for at least two indices $j$, or
if there is a $j$ with $a_{ij} > w_i$. Thus
$$
P = \{i : \Psi_i < 0\}
$$
is the set of indices $i$ such that $m_iw_i > 1$, $g_i = 0$,
$a_{ij} > 0$ for a unique $j$, and $a_{ij} = w_i$ for this $j$.
Moreover
$$
i \in P \Rightarrow \Psi_i = \frac{1}{2}(-m_iw_i + 1)
$$
The strategy of proof is to show that given $i \in P$ we can borrow a bit
from $\Psi_j$ where $j$ is the neighbour of $i$, i.e., $a_{ij} > 0$.
However, this won't quite work because $j$ may be an index with $\Psi_j = 0$.
\medskip\noindent
Consider the set
$$
Z = \{j : g_j = 0\text{ and }
j\text{ has exactly two neighbours }i, k\text{ with }
a_{ij} = w_j = a_{jk}\}
$$
For $j \in Z$ we have $\Psi_j = 0$. We will consider sequences
$M = (i, j_1, \ldots, j_s)$ where $s \geq 0$,
$i \in P$, $j_1, \ldots, j_s \in Z$, and
$a_{ij_1} > 0, a_{j_1j_2} > 0, \ldots, a_{j_{s - 1}j_s} > 0$.
If our numerical type consists of two indices which are in $P$
or more generally if our numerical type consists of
two indices which are in $P$ and all other indices in $Z$, then
$g_{top} = 0$ and we win by
Lemma \ref{lemma-non-irreducible-minimal-type-genus-at-least-one}.
We may and do discard these cases.
\medskip\noindent
Let $M = (i, j_1, \ldots, j_s)$ be a maximal sequence and let
$k$ be the second neighbour of $j_s$. (If $s = 0$, then $k$
is the unique neighbour of $i$.) By maximality $k \not \in Z$
and by what we just said $k \not \in P$. Observe that
$w_i = a_{ij_1} = w_{j_1} = a_{j_1j_2} = \ldots = w_{j_s} =
a_{j_sk}$. Looking at the definition
of a numerical type we see that
\begin{align*}
m_ia_{ii} + m_{j_1}w_i & = 0,\\
m_iw_i + m_{j_1}a_{j_1j_1} + m_{j_2}w_i & = 0,\\
\ldots & \ldots \\
m_{j_{s - 1}}w_i + m_{j_s}a_{j_sj_s} + m_kw_i & = 0
\end{align*}
The first equality implies $m_{j_1} \geq 2m_i$ because the
numerical type is minimal. Then the second equality implies
$m_{j_2} \geq 3m_i$, and so on. In any case, we conclude that
$m_k \geq 2m_i$ (including when $s = 0$).
\medskip\noindent
Let $k$ be an index such that we have a $t > 0$ and pairwise distinct
maximal sequences $M_1, \ldots, M_t$ as above, with
$M_b = (i_b, j_{b, 1}, \ldots, j_{b, s_b})$
such that $k$ is a neighbour of $j_{b, s_b}$ for $b = 1, \ldots, t$.
We will show that $\Phi_j + \sum_{b = 1, \ldots, t} \Phi_{i_b} \geq 0$.
This will finish the proof of the lemma by what we said above.
Let $M$ be the union of the indices occurring in $M_b$, $b = 1, \ldots, t$.
We write
$$
\Psi_k =
-\sum\nolimits_{b = 1, \ldots, t} \Psi_{i_b} + \Psi_k'
$$
where
\begin{align*}
\Psi_k' & =
m_kw_k\left(-1 + g_k +
\frac{1}{2} \sum\nolimits_{b = 1, \ldots t}
(\frac{a_{kj_{b, s_b}}}{w_k} - \frac{m_{i_b}w_{i_b}}{m_kw_k}) +
\frac{1}{2} \sum\nolimits_{l \not = k,\ l \not \in M}
\frac{a_{kl}}{w_k}
\right) \\
&
-\left(
-1 + \frac{1}{2}\sum\nolimits_{l \not = k,\ l \not \in M,\ a_{kl} > 0} 1
\right)
\end{align*}
Assume $\Psi_k' < 0$ to get a contradiction.
If the set $\{l : l \not = k,\ l \not \in M,\ a_{kl} > 0\}$ is empty,
then $\{1, \ldots, n\} = M \cup \{k\}$ and $g_{top} = 0$
because $e = n - 1$ in this case and the result holds by
Lemma \ref{lemma-non-irreducible-minimal-type-genus-at-least-one}.
Thus we may assume there is at least one such $l$ which contributes
$(1/2)a_{kl}/w_k \geq 1/2$ to the sum inside the first brackets.
For each $b = 1, \ldots, t$ we have
$$
\frac{a_{kj_{b, s_b}}}{w_k} - \frac{m_{i_b}w_{i_b}}{m_kw_k} =
\frac{w_{i_b}}{w_k}(1 - \frac{m_{i_b}}{m_k})
$$
This expression is $\geq \frac{1}{2}$ because $m_k \geq 2m_{i_b}$
by the previous paragraph and is $\geq 1$ if $w_k < w_{i_b}$.
It follows that $\Psi_k' < 0$ implies $g_k = 0$.
If $t \geq 2$ or $t = 1$ and $w_k < w_{i_1}$, then $\Psi_k' \geq 0$
(here we use the existence of an $l$ as shown above) which
is a contradiction too.
Thus $t = 1$ and $w_k = w_{i_1}$. If there at least two nonzero terms
in the sum over $l$ or if there is one such $k$ and $a_{kl} > w_k$, then
$\Psi_k' \geq 0$ as well. The final possibility is that $t = 1$ and
there is one $l$ with $a_{kl} = w_k$. This is disallowed as this would
mean $k \in Z$ contradicting the maximality of $M_1$.
\end{proof}
\begin{lemma}
\label{lemma-minus-two}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
Assume $n > 1$. If $i$ is such that the contribution
$m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})$
to the genus $g$ is $0$, then $g_i = 0$ and $a_{ii} = -2w_i$.
\end{lemma}
\begin{proof}
Follows immediately from Lemma \ref{lemma-diagonal-negative} and
$w_i > 0$, $g_i \geq 0$, and $w_i | a_{ii}$.
\end{proof}
\noindent
It turns out that the indices satisfying this relation play an
important role in the structure of minimal numerical types.
Hence we give them a name.
\begin{definition}
\label{definition-type-minus-two}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type of genus $g$.
We say $i$ is a {\it $(-2)$-index} if $g_i = 0$ and $a_{ii} = -2w_i$.
\end{definition}
\noindent
Given a minimal numerical type of genus $g$ the $(-2)$-indices
are exactly the indices which do not contribute a positive number
to the genus in the formula
$$
g = 1 + \sum m_i(w_i(g_i - 1) - \frac{1}{2} a_{ii})
$$
Thus it will be somewhat tricky to bound the quantities associated
with $(-2)$-indices as we will see later.
\begin{remark}
\label{remark-genus-equality}
Let $n, m_i, a_{ij}, w_i, g_i$ be a minimal numerical type with $n > 1$.
Equality $g = g_{top}$ can hold in Lemma \ref{lemma-genus-nonnegative}.
For example, if $m_i = w_i = 1$ and $g_i = 0$ for all $i$ and
$a_{ij} \in \{0, 1\}$ for $i < j$.
\end{remark}
\section{The Picard group of a numerical type}
\label{section-picard-group}
\noindent
Here is the definition.
\begin{definition}
\label{definition-picard-group}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$. The
{\it Picard group of $T$} is the cokernel of the matrix
$(a_{ij}/w_i)$, more precisely
$$
\Pic(T) =
\Coker\left(
\mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n},\quad
e_i
\mapsto
\sum \frac{a_{ij}}{w_j}e_j
\right)
$$
where $e_i$ denotes the $i$th standard basis vector for $\mathbf{Z}^{\oplus n}$.
\end{definition}
\begin{lemma}
\label{lemma-picard-rank-1}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$.
The Picard group of $T$ is a finitely generated abelian group of rank $1$.
\end{lemma}
\begin{proof}
If $n = 1$, then $A = (a_{ij})$ is the zero matrix and
the result is clear. For $n > 1$ the matrix $A$ has rank
$n - 1$ by either Lemma \ref{lemma-recurring-real} or
Lemma \ref{lemma-recurring-symmetric-real}.
Of course the rank is not affected by scaling the rows
by $1/w_i$. This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-picard-T-and-A}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$.
Then $\Pic(T) \subset \Coker(A)$ where $A = (a_{ij})$.
\end{lemma}
\begin{proof}
Since $\Pic(T)$ is the cokernel of $(a_{ij}/w_i)$
we see that there is a commutative diagram
$$
\xymatrix{
0 \ar[r] &
\mathbf{Z}^{\oplus n} \ar[rr]_A & &
\mathbf{Z}^{\oplus n} \ar[rr] & &
\Coker(A) \ar[r] & 0 \\
0 \ar[r] &
\mathbf{Z}^{\oplus n} \ar[rr]^{(a_{ij}/w_i)} \ar[u]_{\text{id}} & &
\mathbf{Z}^{\oplus n} \ar[rr] \ar[u]_{\text{diag}(w_1, \ldots, w_n)} & &
\Pic(T) \ar[r] \ar[u] & 0
}
$$
with exact rows. By the snake lemma we conclude that
$\Pic(T) \subset \Coker(A)$.
\end{proof}
\begin{lemma}
\label{lemma-contract-picard-group}
Let $n, m_i, a_{ij}, w_i, g_i$ be a numerical type $T$.
Assume $n$ is a $(-1)$-index. Let $T'$ be the numerical
type constructed in Lemma \ref{lemma-contract}. There exists an
injective map
$$
\Pic(T) \to \Pic(T')
$$
whose cokernel is an elementary abelian $2$-group.
\end{lemma}
\begin{proof}
Recall that $n' = n - 1$. Let $e_i$, resp., $e'_i$ be the $i$th
basis vector of $\mathbf{Z}^{\oplus n}$, resp.\ $\mathbf{Z}^{\oplus n - 1}$.
First we denote
$$
q : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n - 1},
\quad e_n \mapsto 0\text{ and }e_i \mapsto e'_i\text{ for }i \leq n - 1
$$
and we set
$$
p : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n - 1},\quad
e_n \mapsto \sum\nolimits_{j = 1}^{n - 1} \frac{a_{nj}}{w'_j} e'_j
\text{ and }
e_i \mapsto \frac{w_i}{w'_i} e'_i\text{ for }i \leq n - 1
$$
A computation (which we omit) shows there is a commutative diagram
$$
\xymatrix{
\mathbf{Z}^{\oplus n} \ar[rr]_{(a_{ij}/w_i)} \ar[d]_q & &
\mathbf{Z}^{\oplus n} \ar[d]^p \\
\mathbf{Z}^{\oplus n'} \ar[rr]^{(a'_{ij}/w'_i)} & &
\mathbf{Z}^{\oplus n'}
}
$$
Since the cokernel of the top arrow is
$\Pic(T)$ and the cokernel of the bottom arrow
is $\Pic(T')$, we obtain the desired homomorphism
of Picard groups. Since $\frac{w_i}{w'_i} \in \{1, 2\}$
we see that the cokernel of $\Pic(T) \to \Pic(T')$
is annihilated by $2$ (because $2e'_i$ is in the image of $p$
for all $i \leq n - 1$).
Finally, we show $\Pic(T) \to \Pic(T')$ is injective.
Let $L = (l_1, \ldots, l_n)$ be a representative
of an element of $\Pic(T)$ mapping to zero in $\Pic(T')$.
Since $q$ is surjective, a diagram chase shows that we can assume
$L$ is in the kernel of $p$. This means that
$l_na_{ni}/w'_i + l_iw_i/w'_i = 0$, i.e., $l_i = - a_{ni}/w_i l_n$.
Thus $L$ is the image of $-l_ne_n$ under the map $(a_{ij}/w_j)$