-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathdpa.tex
2945 lines (2664 loc) · 109 KB
/
dpa.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Divided Power Algebra}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we talk about divided power algebras and what
you can do with them. A reference is the book \cite{Berthelot}.
\section{Divided powers}
\label{section-divided-powers}
\noindent
In this section we collect some results on divided power rings.
We will use the convention $0! = 1$ (as empty products should give $1$).
\begin{definition}
\label{definition-divided-powers}
Let $A$ be a ring. Let $I$ be an ideal of $A$. A collection of maps
$\gamma_n : I \to I$, $n > 0$ is called a {\it divided power structure}
on $I$ if for all $n \geq 0$, $m > 0$, $x, y \in I$, and $a \in A$ we have
\begin{enumerate}
\item $\gamma_1(x) = x$, we also set $\gamma_0(x) = 1$,
\item $\gamma_n(x)\gamma_m(x) = \frac{(n + m)!}{n! m!} \gamma_{n + m}(x)$,
\item $\gamma_n(ax) = a^n \gamma_n(x)$,
\item $\gamma_n(x + y) = \sum_{i = 0, \ldots, n} \gamma_i(x)\gamma_{n - i}(y)$,
\item $\gamma_n(\gamma_m(x)) = \frac{(nm)!}{n! (m!)^n} \gamma_{nm}(x)$.
\end{enumerate}
\end{definition}
\noindent
Note that the rational numbers $\frac{(n + m)!}{n! m!}$
and $\frac{(nm)!}{n! (m!)^n}$ occurring in the definition are in fact integers;
the first is the number of ways to choose $n$ out of $n + m$ and
the second counts the number of ways to divide a group of $nm$
objects into $n$ groups of $m$.
We make some remarks about the definition which show that
$\gamma_n(x)$ is a replacement for $x^n/n!$ in $I$.
\begin{lemma}
\label{lemma-silly}
Let $A$ be a ring. Let $I$ be an ideal of $A$.
\begin{enumerate}
\item If $\gamma$ is a divided power structure\footnote{Here
and in the following, $\gamma$ stands short for a sequence
of maps $\gamma_1, \gamma_2, \gamma_3, \ldots$ from $I$ to $I$.}
on $I$, then
$n! \gamma_n(x) = x^n$ for $n \geq 1$, $x \in I$.
\end{enumerate}
Assume $A$ is torsion free as a $\mathbf{Z}$-module.
\begin{enumerate}
\item[(2)] A divided power structure on $I$, if it exists, is unique.
\item[(3)] If $\gamma_n : I \to I$ are maps then
$$
\gamma\text{ is a divided power structure}
\Leftrightarrow
n! \gamma_n(x) = x^n\ \forall x \in I, n \geq 1.
$$
\item[(4)] The ideal $I$ has a divided power structure
if and only if there exists
a set of generators $x_i$ of $I$ as an ideal such that
for all $n \geq 1$ we have $x_i^n \in (n!)I$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). If $\gamma$ is a divided power structure, then condition
(2) (applied to $1$ and $n-1$ instead of $n$ and $m$)
implies that $n \gamma_n(x) = \gamma_1(x)\gamma_{n - 1}(x)$. Hence
by induction and condition (1) we get $n! \gamma_n(x) = x^n$.
\medskip\noindent
Assume $A$ is torsion free as a $\mathbf{Z}$-module.
Proof of (2). This is clear from (1).
\medskip\noindent
Proof of (3). Assume that $n! \gamma_n(x) = x^n$ for all $x \in I$ and
$n \geq 1$. Since $A \subset A \otimes_{\mathbf{Z}} \mathbf{Q}$ it suffices
to prove the axioms (1) -- (5) of Definition
\ref{definition-divided-powers} in case $A$ is a $\mathbf{Q}$-algebra.
In this case $\gamma_n(x) = x^n/n!$ and it is straightforward
to verify (1) -- (5); for example, (4) corresponds to the binomial
formula
$$
(x + y)^n = \sum_{i = 0, \ldots, n} \frac{n!}{i!(n - i)!} x^iy^{n - i}
$$
We encourage the reader to do the verifications
to make sure that we have the coefficients correct.
\medskip\noindent
Proof of (4). Assume we have generators $x_i$ of $I$ as an ideal
such that $x_i^n \in (n!)I$ for all $n \geq 1$. We claim that
for all $x \in I$ we have $x^n \in (n!)I$. If the claim holds then
we can set $\gamma_n(x) = x^n/n!$ which is a divided power structure by (3).
To prove the claim we note that it holds for $x = ax_i$. Hence we see
that the claim holds for a set of generators of $I$ as an abelian group.
By induction on the length of an expression in terms of these, it suffices
to prove the claim for $x + y$ if it holds for $x$ and $y$. This
follows immediately from the binomial theorem.
\end{proof}
\begin{example}
\label{example-ideal-generated-by-p}
Let $p$ be a prime number.
Let $A$ be a ring such that every integer $n$ not divisible by $p$
is invertible, i.e., $A$ is a $\mathbf{Z}_{(p)}$-algebra. Then
$I = pA$ has a canonical divided power structure. Namely, given
$x = pa \in I$ we set
$$
\gamma_n(x) = \frac{p^n}{n!} a^n
$$
The reader verifies immediately that $p^n/n! \in p\mathbf{Z}_{(p)}$
for $n \geq 1$ (for instance, this can be derived from the fact
that the exponent of $p$ in the prime factorization of $n!$ is
$\left\lfloor n/p \right\rfloor + \left\lfloor n/p^2 \right\rfloor
+ \left\lfloor n/p^3 \right\rfloor + \ldots$),
so that the definition makes sense and gives us a sequence of
maps $\gamma_n : I \to I$. It is a straightforward exercise to
verify that conditions (1) -- (5) of
Definition \ref{definition-divided-powers} are satisfied.
Alternatively, it is clear that the definition works for
$A_0 = \mathbf{Z}_{(p)}$ and then the result follows from
Lemma \ref{lemma-gamma-extends}.
\end{example}
\noindent
We notice that $\gamma_n\left(0\right) = 0$ for any ideal $I$ of
$A$ and any divided power structure $\gamma$ on $I$. (This follows
from axiom (3) in Definition \ref{definition-divided-powers},
applied to $a=0$.)
\begin{lemma}
\label{lemma-check-on-generators}
Let $A$ be a ring. Let $I$ be an ideal of $A$. Let $\gamma_n : I \to I$,
$n \geq 1$ be a sequence of maps. Assume
\begin{enumerate}
\item[(a)] (1), (3), and (4) of Definition \ref{definition-divided-powers}
hold for all $x, y \in I$, and
\item[(b)] properties (2) and (5) hold for $x$ in
some set of generators of $I$ as an ideal.
\end{enumerate}
Then $\gamma$ is a divided power structure on $I$.
\end{lemma}
\begin{proof}
The numbers (1), (2), (3), (4), (5) in this proof refer to the
conditions listed in Definition \ref{definition-divided-powers}.
Applying (3) we see that if (2) and (5) hold for $x$ then (2) and (5)
hold for $ax$ for all $a \in A$. Hence we see (b) implies
(2) and (5) hold for a set of generators
of $I$ as an abelian group. Hence, by induction of the length
of an expression in terms of these it suffices to prove that, given
$x, y \in I$ such that (2) and (5) hold for $x$ and $y$, then (2) and (5) hold
for $x + y$.
\medskip\noindent
Proof of (2) for $x + y$. By (4) we have
$$
\gamma_n(x + y)\gamma_m(x + y) =
\sum\nolimits_{i + j = n,\ k + l = m}
\gamma_i(x)\gamma_k(x)\gamma_j(y)\gamma_l(y)
$$
Using (2) for $x$ and $y$ this equals
$$
\sum \frac{(i + k)!}{i!k!}\frac{(j + l)!}{j!l!}
\gamma_{i + k}(x)\gamma_{j + l}(y)
$$
Comparing this with the expansion
$$
\gamma_{n + m}(x + y) = \sum \gamma_a(x)\gamma_b(y)
$$
we see that we have to prove that given $a + b = n + m$ we have
$$
\sum\nolimits_{i + k = a,\ j + l = b,\ i + j = n,\ k + l = m}
\frac{(i + k)!}{i!k!}\frac{(j + l)!}{j!l!}
=
\frac{(n + m)!}{n!m!}.
$$
Instead of arguing this directly, we note that the result is true
for the ideal $I = (x, y)$ in the polynomial ring $\mathbf{Q}[x, y]$
because $\gamma_n(f) = f^n/n!$, $f \in I$ defines a divided power
structure on $I$. Hence the equality of rational numbers above is true.
\medskip\noindent
Proof of (5) for $x + y$ given that (1) -- (4) hold and that (5)
holds for $x$ and $y$. We will again reduce the proof to an equality
of rational numbers. Namely, using (4) we can write
$\gamma_n(\gamma_m(x + y)) = \gamma_n(\sum \gamma_i(x)\gamma_j(y))$.
Using (4) we can write
$\gamma_n(\gamma_m(x + y))$ as a sum of terms which are products of
factors of the form $\gamma_k(\gamma_i(x)\gamma_j(y))$.
If $i > 0$ then
\begin{align*}
\gamma_k(\gamma_i(x)\gamma_j(y)) & =
\gamma_j(y)^k\gamma_k(\gamma_i(x)) \\
& = \frac{(ki)!}{k!(i!)^k} \gamma_j(y)^k \gamma_{ki}(x) \\
& =
\frac{(ki)!}{k!(i!)^k} \frac{(kj)!}{(j!)^k} \gamma_{ki}(x) \gamma_{kj}(y)
\end{align*}
using (3) in the first equality, (5) for $x$ in the second, and
(2) exactly $k$ times in the third. Using (5) for $y$ we see the
same equality holds when $i = 0$. Continuing like this using all
axioms but (5) we see that we can write
$$
\gamma_n(\gamma_m(x + y)) =
\sum\nolimits_{i + j = nm} c_{ij}\gamma_i(x)\gamma_j(y)
$$
for certain universal constants $c_{ij} \in \mathbf{Z}$. Again the fact
that the equality is valid in the polynomial ring $\mathbf{Q}[x, y]$
implies that the coefficients $c_{ij}$ are all equal to $(nm)!/n!(m!)^n$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-two-ideals}
Let $A$ be a ring with two ideals $I, J \subset A$.
Let $\gamma$ be a divided power structure on $I$ and let
$\delta$ be a divided power structure on $J$.
Then
\begin{enumerate}
\item $\gamma$ and $\delta$ agree on $IJ$,
\item if $\gamma$ and $\delta$ agree on $I \cap J$ then they are
the restriction of a unique divided power structure $\epsilon$
on $I + J$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $x \in I$ and $y \in J$. Then
$$
\gamma_n(xy) = y^n\gamma_n(x) = n! \delta_n(y) \gamma_n(x) =
\delta_n(y) x^n = \delta_n(xy).
$$
Hence $\gamma$ and $\delta$ agree on a set of (additive) generators
of $IJ$. By property (4) of Definition \ref{definition-divided-powers}
it follows that they agree on all of $IJ$.
\medskip\noindent
Assume $\gamma$ and $\delta$ agree on $I \cap J$.
Let $z \in I + J$. Write $z = x + y$ with $x \in I$ and $y \in J$.
Then we set
$$
\epsilon_n(z) = \sum \gamma_i(x)\delta_{n - i}(y)
$$
for all $n \geq 1$.
To see that this is well defined, suppose that $z = x' + y'$ is another
representation with $x' \in I$ and $y' \in J$. Then
$w = x - x' = y' - y \in I \cap J$. Hence
\begin{align*}
\sum\nolimits_{i + j = n} \gamma_i(x)\delta_j(y)
& =
\sum\nolimits_{i + j = n} \gamma_i(x' + w)\delta_j(y) \\
& =
\sum\nolimits_{i' + l + j = n} \gamma_{i'}(x')\gamma_l(w)\delta_j(y) \\
& =
\sum\nolimits_{i' + l + j = n} \gamma_{i'}(x')\delta_l(w)\delta_j(y) \\
& =
\sum\nolimits_{i' + j' = n} \gamma_{i'}(x')\delta_{j'}(y + w) \\
& =
\sum\nolimits_{i' + j' = n} \gamma_{i'}(x')\delta_{j'}(y')
\end{align*}
as desired. Hence, we have defined maps
$\epsilon_n : I + J \to I + J$ for all $n \geq 1$; it is easy
to see that $\epsilon_n \mid_{I} = \gamma_n$ and
$\epsilon_n \mid_{J} = \delta_n$.
Next, we prove conditions (1) -- (5) of
Definition \ref{definition-divided-powers} for the collection
of maps $\epsilon_n$.
Properties (1) and (3) are clear. To see (4), suppose
that $z = x + y$ and $z' = x' + y'$ with $x, x' \in I$ and $y, y' \in J$
and compute
\begin{align*}
\epsilon_n(z + z') & =
\sum\nolimits_{a + b = n} \gamma_a(x + x')\delta_b(y + y') \\
& =
\sum\nolimits_{i + i' + j + j' = n}
\gamma_i(x) \gamma_{i'}(x')\delta_j(y)\delta_{j'}(y') \\
& =
\sum\nolimits_{k = 0, \ldots, n}
\sum\nolimits_{i+j=k} \gamma_i(x)\delta_j(y)
\sum\nolimits_{i'+j'=n-k} \gamma_{i'}(x')\delta_{j'}(y') \\
& =
\sum\nolimits_{k = 0, \ldots, n}\epsilon_k(z)\epsilon_{n-k}(z')
\end{align*}
as desired. Now we see that it suffices to prove (2) and (5) for
elements of $I$ or $J$, see Lemma \ref{lemma-check-on-generators}.
This is clear because $\gamma$ and $\delta$ are divided power
structures.
\medskip\noindent
The existence of a divided power structure $\epsilon$ on $I+J$
whose restrictions to $I$ and $J$ are $\gamma$ and $\delta$ is
thus proven; its uniqueness is rather clear.
\end{proof}
\begin{lemma}
\label{lemma-nil}
Let $p$ be a prime number. Let $A$ be a ring, let $I \subset A$ be an ideal,
and let $\gamma$ be a divided power structure on $I$. Assume $p$ is nilpotent
in $A/I$. Then $I$ is locally nilpotent if and only if $p$ is nilpotent in $A$.
\end{lemma}
\begin{proof}
If $p^N = 0$ in $A$, then for $x \in I$ we have
$x^{pN} = (pN)!\gamma_{pN}(x) = 0$ because $(pN)!$ is
divisible by $p^N$. Conversely, assume $I$ is locally nilpotent.
We've also assumed that $p$ is nilpotent in $A/I$, hence
$p^r \in I$ for some $r$, hence $p^r$ nilpotent, hence $p$ nilpotent.
\end{proof}
\section{Divided power rings}
\label{section-divided-power-rings}
\noindent
There is a category of divided power rings.
Here is the definition.
\begin{definition}
\label{definition-divided-power-ring}
A {\it divided power ring} is a triple $(A, I, \gamma)$ where
$A$ is a ring, $I \subset A$ is an ideal, and $\gamma = (\gamma_n)_{n \geq 1}$
is a divided power structure on $I$.
A {\it homomorphism of divided power rings}
$\varphi : (A, I, \gamma) \to (B, J, \delta)$ is a ring homomorphism
$\varphi : A \to B$ such that $\varphi(I) \subset J$ and such that
$\delta_n(\varphi(x)) = \varphi(\gamma_n(x))$ for all $x \in I$ and
$n \geq 1$.
\end{definition}
\noindent
We sometimes say ``let $(B, J, \delta)$ be a divided power algebra over
$(A, I, \gamma)$'' to indicate that $(B, J, \delta)$ is a divided power ring
which comes equipped with a homomorphism of divided power rings
$(A, I, \gamma) \to (B, J, \delta)$.
\begin{lemma}
\label{lemma-limits}
The category of divided power rings has all limits and they agree with
limits in the category of rings.
\end{lemma}
\begin{proof}
The empty limit is the zero ring (that's weird but we need it).
The product of a collection of divided power rings $(A_t, I_t, \gamma_t)$,
$t \in T$ is given by $(\prod A_t, \prod I_t, \gamma)$ where
$\gamma_n((x_t)) = (\gamma_{t, n}(x_t))$.
The equalizer of $\alpha, \beta : (A, I, \gamma) \to (B, J, \delta)$
is just $C = \{a \in A \mid \alpha(a) = \beta(a)\}$ with ideal $C \cap I$
and induced divided powers. It follows that all limits exist, see
Categories, Lemma \ref{categories-lemma-limits-products-equalizers}.
\end{proof}
\noindent
The following lemma illustrates a very general category theoretic
phenomenon in the case of divided power algebras.
\begin{lemma}
\label{lemma-a-version-of-brown}
Let $\mathcal{C}$ be the category of divided power rings. Let
$F : \mathcal{C} \to \textit{Sets}$ be a functor.
Assume that
\begin{enumerate}
\item there exists a cardinal $\kappa$ such that for every
$f \in F(A, I, \gamma)$ there exists a morphism
$(A', I', \gamma') \to (A, I, \gamma)$ of $\mathcal{C}$ such that $f$
is the image of $f' \in F(A', I', \gamma')$ and $|A'| \leq \kappa$, and
\item $F$ commutes with limits.
\end{enumerate}
Then $F$ is representable, i.e., there exists an object $(B, J, \delta)$
of $\mathcal{C}$ such that
$$
F(A, I, \gamma) = \Hom_\mathcal{C}((B, J, \delta), (A, I, \gamma))
$$
functorially in $(A, I, \gamma)$.
\end{lemma}
\begin{proof}
This is a special case of
Categories, Lemma \ref{categories-lemma-a-version-of-brown}.
\end{proof}
\begin{lemma}
\label{lemma-colimits}
The category of divided power rings has all colimits.
\end{lemma}
\begin{proof}
The empty colimit is $\mathbf{Z}$ with divided power ideal $(0)$.
Let's discuss general colimits. Let $\mathcal{C}$ be a category and let
$c \mapsto (A_c, I_c, \gamma_c)$ be a diagram. Consider the functor
$$
F(B, J, \delta) = \lim_{c \in \mathcal{C}}
Hom((A_c, I_c, \gamma_c), (B, J, \delta))
$$
Note that any $f = (f_c)_{c \in C} \in F(B, J, \delta)$ has the property
that all the images $f_c(A_c)$ generate a subring $B'$ of $B$ of bounded
cardinality $\kappa$ and that all the images $f_c(I_c)$ generate a
divided power sub ideal $J'$ of $B'$. And we get a factorization of
$f$ as a $f'$ in $F(B')$ followed by the inclusion $B' \to B$. Also,
$F$ commutes with limits. Hence we may apply
Lemma \ref{lemma-a-version-of-brown}
to see that $F$ is representable and we win.
\end{proof}
\begin{remark}
\label{remark-forgetful}
The forgetful functor $(A, I, \gamma) \mapsto A$ does not commute with
colimits. For example, let
$$
\xymatrix{
(B, J, \delta) \ar[r] & (B'', J'', \delta'') \\
(A, I, \gamma) \ar[r] \ar[u] & (B', J', \delta') \ar[u]
}
$$
be a pushout in the category of divided power rings.
Then in general the map $B \otimes_A B' \to B''$ isn't an
isomorphism. (It is always surjective.)
An explicit example is given by
$(A, I, \gamma) = (\mathbf{Z}, (0), \emptyset)$,
$(B, J, \delta) = (\mathbf{Z}/4\mathbf{Z}, 2\mathbf{Z}/4\mathbf{Z}, \delta)$,
and
$(B', J', \delta') =
(\mathbf{Z}/4\mathbf{Z}, 2\mathbf{Z}/4\mathbf{Z}, \delta')$
where $\delta_2(2) = 2$ and $\delta'_2(2) = 0$.
More precisely, using Lemma \ref{lemma-need-only-gamma-p}
we let $\delta$, resp.\ $\delta'$ be the unique
divided power structure on $J$, resp.\ $J'$ such that
$\delta_2 : J \to J$, resp.\ $\delta'_2 : J' \to J'$
is the map $0 \mapsto 0, 2 \mapsto 2$, resp.\ $0 \mapsto 0, 2 \mapsto 0$.
Then $(B'', J'', \delta'') = (\mathbf{F}_2, (0), \emptyset)$
which doesn't agree with the tensor product. However, note that it is always
true that
$$
B''/J'' = B/J \otimes_{A/I} B'/J'
$$
as can be seen from the universal property of the pushout by considering
maps into divided power algebras of the form $(C, (0), \emptyset)$.
\end{remark}
\section{Extending divided powers}
\label{section-extend}
\noindent
Here is the definition.
\begin{definition}
\label{definition-extends}
Given a divided power ring $(A, I, \gamma)$ and a ring map
$A \to B$ we say $\gamma$ {\it extends} to $B$ if there exists a
divided power structure $\bar \gamma$ on $IB$ such that
$(A, I, \gamma) \to (B, IB, \bar\gamma)$ is a homomorphism of
divided power rings.
\end{definition}
\begin{lemma}
\label{lemma-gamma-extends}
Let $(A, I, \gamma)$ be a divided power ring.
Let $A \to B$ be a ring map.
If $\gamma$ extends to $B$ then it extends uniquely.
Assume (at least) one of the following conditions holds
\begin{enumerate}
\item $IB = 0$,
\item $I$ is principal, or
\item $A \to B$ is flat.
\end{enumerate}
Then $\gamma$ extends to $B$.
\end{lemma}
\begin{proof}
Any element of $IB$ can be written as a finite sum
$\sum\nolimits_{i=1}^t b_ix_i$ with
$b_i \in B$ and $x_i \in I$. If $\gamma$ extends to $\bar\gamma$ on $IB$
then $\bar\gamma_n(x_i) = \gamma_n(x_i)$.
Thus, conditions (3) and (4) in
Definition \ref{definition-divided-powers} imply that
$$
\bar\gamma_n(\sum\nolimits_{i=1}^t b_ix_i) =
\sum\nolimits_{n_1 + \ldots + n_t = n}
\prod\nolimits_{i = 1}^t b_i^{n_i}\gamma_{n_i}(x_i)
$$
Thus we see that $\bar\gamma$ is unique if it exists.
\medskip\noindent
If $IB = 0$ then setting $\bar\gamma_n(0) = 0$ works. If $I = (x)$
then we define $\bar\gamma_n(bx) = b^n\gamma_n(x)$. This is well defined:
if $b'x = bx$, i.e., $(b - b')x = 0$ then
\begin{align*}
b^n\gamma_n(x) - (b')^n\gamma_n(x)
& =
(b^n - (b')^n)\gamma_n(x) \\
& =
(b^{n - 1} + \ldots + (b')^{n - 1})(b - b')\gamma_n(x) = 0
\end{align*}
because $\gamma_n(x)$ is divisible by $x$ (since
$\gamma_n(I) \subset I$) and hence annihilated by $b - b'$.
Next, we prove conditions (1) -- (5) of
Definition \ref{definition-divided-powers}.
Parts (1), (2), (3), (5) are obvious from the construction.
For (4) suppose that $y, z \in IB$, say $y = bx$ and $z = cx$. Then
$y + z = (b + c)x$ hence
\begin{align*}
\bar\gamma_n(y + z)
& =
(b + c)^n\gamma_n(x) \\
& =
\sum \frac{n!}{i!(n - i)!}b^ic^{n -i}\gamma_n(x) \\
& =
\sum b^ic^{n - i}\gamma_i(x)\gamma_{n - i}(x) \\
& =
\sum \bar\gamma_i(y)\bar\gamma_{n -i}(z)
\end{align*}
as desired.
\medskip\noindent
Assume $A \to B$ is flat. Suppose that $b_1, \ldots, b_r \in B$ and
$x_1, \ldots, x_r \in I$. Then
$$
\bar\gamma_n(\sum b_ix_i) =
\sum b_1^{e_1} \ldots b_r^{e_r} \gamma_{e_1}(x_1) \ldots \gamma_{e_r}(x_r)
$$
where the sum is over $e_1 + \ldots + e_r = n$
if $\bar\gamma_n$ exists. Next suppose that we have $c_1, \ldots, c_s \in B$
and $a_{ij} \in A$ such that $b_i = \sum a_{ij}c_j$.
Setting $y_j = \sum a_{ij}x_i$ we claim that
$$
\sum b_1^{e_1} \ldots b_r^{e_r} \gamma_{e_1}(x_1) \ldots \gamma_{e_r}(x_r) =
\sum c_1^{d_1} \ldots c_s^{d_s} \gamma_{d_1}(y_1) \ldots \gamma_{d_s}(y_s)
$$
in $B$ where on the right hand side we are summing over
$d_1 + \ldots + d_s = n$. Namely, using the axioms of a divided power
structure we can expand both sides into a sum with coefficients
in $\mathbf{Z}[a_{ij}]$ of terms of the form
$c_1^{d_1} \ldots c_s^{d_s}\gamma_{e_1}(x_1) \ldots \gamma_{e_r}(x_r)$.
To see that the coefficients agree we note that the result is true
in $\mathbf{Q}[x_1, \ldots, x_r, c_1, \ldots, c_s, a_{ij}]$ with
$\gamma$ the unique divided power structure on $(x_1, \ldots, x_r)$.
By Lazard's theorem (Algebra, Theorem \ref{algebra-theorem-lazard})
we can write $B$ as a directed colimit of finite free $A$-modules.
In particular, if $z \in IB$ is written as $z = \sum x_ib_i$ and
$z = \sum x'_{i'}b'_{i'}$, then we can find $c_1, \ldots, c_s \in B$
and $a_{ij}, a'_{i'j} \in A$ such that $b_i = \sum a_{ij}c_j$
and $b'_{i'} = \sum a'_{i'j}c_j$ such that
$y_j = \sum x_ia_{ij} = \sum x'_{i'}a'_{i'j}$ holds\footnote{This
can also be proven without recourse to
Algebra, Theorem \ref{algebra-theorem-lazard}. Indeed, if
$z = \sum x_ib_i$ and $z = \sum x'_{i'}b'_{i'}$, then
$\sum x_ib_i - \sum x'_{i'}b'_{i'} = 0$ is a relation in the
$A$-module $B$. Thus, Algebra, Lemma \ref{algebra-lemma-flat-eq}
(applied to the $x_i$ and $x'_{i'}$ taking the place of the $f_i$,
and the $b_i$ and $b'_{i'}$ taking the role of the $x_i$) yields
the existence of the $c_1, \ldots, c_s \in B$
and $a_{ij}, a'_{i'j} \in A$ as required.}.
Hence the procedure above gives a well defined map $\bar\gamma_n$
on $IB$. By construction $\bar\gamma$ satisfies conditions (1), (3), and
(4). Moreover, for $x \in I$ we have $\bar\gamma_n(x) = \gamma_n(x)$. Hence
it follows from Lemma \ref{lemma-check-on-generators} that $\bar\gamma$
is a divided power structure on $IB$.
\end{proof}
\begin{lemma}
\label{lemma-kernel}
Let $(A, I, \gamma)$ be a divided power ring.
\begin{enumerate}
\item If $\varphi : (A, I, \gamma) \to (B, J, \delta)$ is a
homomorphism of divided power rings, then $\Ker(\varphi) \cap I$
is preserved by $\gamma_n$ for all $n \geq 1$.
\item Let $\mathfrak a \subset A$ be an ideal and set
$I' = I \cap \mathfrak a$. The following are equivalent
\begin{enumerate}
\item $I'$ is preserved by $\gamma_n$ for all $n > 0$,
\item $\gamma$ extends to $A/\mathfrak a$, and
\item there exist a set of generators $x_i$ of $I'$ as an ideal
such that $\gamma_n(x_i) \in I'$ for all $n > 0$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). This is clear. Assume (2)(a). Define
$\bar\gamma_n(x \bmod I') = \gamma_n(x) \bmod I'$ for $x \in I$.
This is well defined since $\gamma_n(x + y) = \gamma_n(x) \bmod I'$
for $y \in I'$ by Definition \ref{definition-divided-powers} (4) and
the fact that $\gamma_j(y) \in I'$ by assumption. It is clear that
$\bar\gamma$ is a divided power structure as $\gamma$ is one.
Hence (2)(b) holds. Also, (2)(b) implies (2)(a) by part (1).
It is clear that (2)(a) implies (2)(c). Assume (2)(c).
Note that $\gamma_n(x) = a^n\gamma_n(x_i) \in I'$ for $x = ax_i$.
Hence we see that $\gamma_n(x) \in I'$ for a set of generators of $I'$
as an abelian group. By induction on the length of an expression in
terms of these, it suffices to prove $\forall n : \gamma_n(x + y) \in I'$
if $\forall n : \gamma_n(x), \gamma_n(y) \in I'$. This
follows immediately from the fourth axiom of a divided power structure.
\end{proof}
\begin{lemma}
\label{lemma-sub-dp-ideal}
Let $(A, I, \gamma)$ be a divided power ring.
Let $E \subset I$ be a subset.
Then the smallest ideal $J \subset I$ preserved by $\gamma$
and containing all $f \in E$ is the ideal $J$ generated by
$\gamma_n(f)$, $n \geq 1$, $f \in E$.
\end{lemma}
\begin{proof}
Follows immediately from Lemma \ref{lemma-kernel}.
\end{proof}
\begin{lemma}
\label{lemma-extend-to-completion}
Let $(A, I, \gamma)$ be a divided power ring. Let $p$ be a prime.
If $p$ is nilpotent in $A/I$, then
\begin{enumerate}
\item the $p$-adic completion $A^\wedge = \lim_e A/p^eA$ surjects onto $A/I$,
\item the kernel of this map is the $p$-adic completion $I^\wedge$ of $I$, and
\item each $\gamma_n$ is continuous for the $p$-adic topology and extends
to $\gamma_n^\wedge : I^\wedge \to I^\wedge$ defining a divided power
structure on $I^\wedge$.
\end{enumerate}
If moreover $A$ is a $\mathbf{Z}_{(p)}$-algebra, then
\begin{enumerate}
\item[(4)] for $e$ large enough the ideal $p^eA \subset I$ is preserved by the
divided power structure $\gamma$ and
$$
(A^\wedge, I^\wedge, \gamma^\wedge) = \lim_e (A/p^eA, I/p^eA, \bar\gamma)
$$
in the category of divided power rings.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $t \geq 1$ be an integer such that $p^tA/I = 0$, i.e., $p^tA \subset I$.
The map $A^\wedge \to A/I$ is the composition $A^\wedge \to A/p^tA \to A/I$
which is surjective (for example by
Algebra, Lemma \ref{algebra-lemma-completion-generalities}).
As $p^eI \subset p^eA \cap I \subset p^{e - t}I$ for $e \geq t$ we see
that the kernel of the composition $A^\wedge \to A/I$ is the $p$-adic
completion of $I$. The map $\gamma_n$ is continuous because
$$
\gamma_n(x + p^ey) =
\sum\nolimits_{i + j = n} p^{je}\gamma_i(x)\gamma_j(y) =
\gamma_n(x) \bmod p^eI
$$
by the axioms of a divided power structure. It is clear that the axioms
for divided power structures are inherited by the maps $\gamma_n^\wedge$
from the maps $\gamma_n$. Finally, to see the last statement say $e > t$.
Then $p^eA \subset I$ and $\gamma_1(p^eA) \subset p^eA$ and for $n > 1$
we have
$$
\gamma_n(p^ea) = p^n \gamma_n(p^{e - 1}a) = \frac{p^n}{n!} p^{n(e - 1)}a^n
\in p^e A
$$
as $p^n/n! \in \mathbf{Z}_{(p)}$ and as $n \geq 2$ and $e \geq 2$ so
$n(e - 1) \geq e$.
This proves that $\gamma$ extends to $A/p^eA$, see Lemma \ref{lemma-kernel}.
The statement on limits is clear from the construction of limits in
the proof of Lemma \ref{lemma-limits}.
\end{proof}
\section{Divided power polynomial algebras}
\label{section-divided-power-polynomial-ring}
\noindent
A very useful example is the {\it divided power polynomial algebra}.
Let $A$ be a ring. Let $t \geq 1$. We will denote
$A\langle x_1, \ldots, x_t \rangle$ the following $A$-algebra:
As an $A$-module we set
$$
A\langle x_1, \ldots, x_t \rangle =
\bigoplus\nolimits_{n_1, \ldots, n_t \geq 0} A x_1^{[n_1]} \ldots x_t^{[n_t]}
$$
with multiplication given by
$$
x_i^{[n]}x_i^{[m]} = \frac{(n + m)!}{n!m!}x_i^{[n + m]}.
$$
We also set $x_i = x_i^{[1]}$. Note that
$1 = x_1^{[0]} \ldots x_t^{[0]}$. There is a similar construction
which gives the divided power polynomial algebra in infinitely many
variables. There is an canonical $A$-algebra map
$A\langle x_1, \ldots, x_t \rangle \to A$ sending $x_i^{[n]}$ to zero
for $n > 0$. The kernel of this map is denoted
$A\langle x_1, \ldots, x_t \rangle_{+}$.
\begin{lemma}
\label{lemma-divided-power-polynomial-algebra}
Let $(A, I, \gamma)$ be a divided power ring.
There exists a unique divided power structure $\delta$ on
$$
J = IA\langle x_1, \ldots, x_t \rangle + A\langle x_1, \ldots, x_t \rangle_{+}
$$
such that
\begin{enumerate}
\item $\delta_n(x_i) = x_i^{[n]}$, and
\item $(A, I, \gamma) \to (A\langle x_1, \ldots, x_t \rangle, J, \delta)$
is a homomorphism of divided power rings.
\end{enumerate}
Moreover, $(A\langle x_1, \ldots, x_t \rangle, J, \delta)$ has the
following universal property: A homomorphism of divided power rings
$\varphi : (A\langle x_1, \ldots, x_t \rangle, J, \delta) \to
(C, K, \epsilon)$ is
the same thing as a homomorphism of divided power rings
$A \to C$ and elements $k_1, \ldots, k_t \in K$.
\end{lemma}
\begin{proof}
We will prove the lemma in case of a divided power polynomial algebra
in one variable. The result for the general case can be argued in exactly
the same way, or by noting that $A\langle x_1, \ldots, x_t\rangle$ is
isomorphic to the ring obtained by adjoining the divided power variables
$x_1, \ldots, x_t$ one by one.
\medskip\noindent
Let $A\langle x \rangle_{+}$ be the ideal generated by
$x, x^{[2]}, x^{[3]}, \ldots$.
Note that $J = IA\langle x \rangle + A\langle x \rangle_{+}$
and that
$$
IA\langle x \rangle \cap A\langle x \rangle_{+} =
IA\langle x \rangle \cdot A\langle x \rangle_{+}
$$
Hence by Lemma \ref{lemma-two-ideals} it suffices to show that there
exist divided power structures on the ideals $IA\langle x \rangle$ and
$A\langle x \rangle_{+}$. The existence of the first follows from
Lemma \ref{lemma-gamma-extends} as $A \to A\langle x \rangle$ is flat.
For the second, note that if $A$ is torsion free, then we can apply
Lemma \ref{lemma-silly} (4) to see that $\delta$ exists. Namely, choosing
as generators the elements $x^{[m]}$ we see that
$(x^{[m]})^n = \frac{(nm)!}{(m!)^n} x^{[nm]}$
and $n!$ divides the integer $\frac{(nm)!}{(m!)^n}$.
In general write $A = R/\mathfrak a$ for some torsion free ring $R$
(e.g., a polynomial ring over $\mathbf{Z}$). The kernel of
$R\langle x \rangle \to A\langle x \rangle$ is
$\bigoplus \mathfrak a x^{[m]}$. Applying criterion (2)(c) of
Lemma \ref{lemma-kernel} we see that the divided power structure
on $R\langle x \rangle_{+}$ extends to $A\langle x \rangle$ as
desired.
\medskip\noindent
Proof of the universal property. Given a homomorphism $\varphi : A \to C$
of divided power rings and $k_1, \ldots, k_t \in K$ we consider
$$
A\langle x_1, \ldots, x_t \rangle \to C,\quad
x_1^{[n_1]} \ldots x_t^{[n_t]} \longmapsto
\epsilon_{n_1}(k_1) \ldots \epsilon_{n_t}(k_t)
$$
using $\varphi$ on coefficients. The only thing to check is that
this is an $A$-algebra homomorphism (details omitted). The inverse
construction is clear.
\end{proof}
\begin{remark}
\label{remark-divided-power-polynomial-algebra}
Let $(A, I, \gamma)$ be a divided power ring.
There is a variant of Lemma \ref{lemma-divided-power-polynomial-algebra}
for infinitely many variables. First note that if $s < t$ then there
is a canonical map
$$
A\langle x_1, \ldots, x_s \rangle \to A\langle x_1, \ldots, x_t\rangle
$$
Hence if $W$ is any set, then we set
$$
A\langle x_w: w \in W\rangle =
\colim_{E \subset W} A\langle x_e:e \in E\rangle
$$
(colimit over $E$ finite subset of $W$)
with transition maps as above. By the definition of a colimit we see
that the universal mapping property of $A\langle x_w: w \in W\rangle$ is
completely analogous to the mapping property stated in
Lemma \ref{lemma-divided-power-polynomial-algebra}.
\end{remark}
\noindent
The following lemma can be found in \cite{BO}.
\begin{lemma}
\label{lemma-need-only-gamma-p}
Let $p$ be a prime number. Let $A$ be a ring such that every integer $n$
not divisible by $p$ is invertible, i.e., $A$ is a $\mathbf{Z}_{(p)}$-algebra.
Let $I \subset A$ be an ideal. Two divided power structures
$\gamma, \gamma'$ on $I$ are equal if and only if $\gamma_p = \gamma'_p$.
Moreover, given a map $\delta : I \to I$ such that
\begin{enumerate}
\item $p!\delta(x) = x^p$ for all $x \in I$,
\item $\delta(ax) = a^p\delta(x)$ for all $a \in A$, $x \in I$, and
\item
$\delta(x + y) =
\delta(x) +
\sum\nolimits_{i + j = p, i,j \geq 1} \frac{1}{i!j!} x^i y^j +
\delta(y)$ for all $x, y \in I$,
\end{enumerate}
then there exists a unique divided power structure $\gamma$ on $I$ such
that $\gamma_p = \delta$.
\end{lemma}
\begin{proof}
If $n$ is not divisible by $p$, then $\gamma_n(x) = c x \gamma_{n - 1}(x)$
where $c$ is a unit in $\mathbf{Z}_{(p)}$. Moreover,
$$
\gamma_{pm}(x) = c \gamma_m(\gamma_p(x))
$$
where $c$ is a unit in $\mathbf{Z}_{(p)}$. Thus the first assertion is clear.
For the second assertion, we can, working backwards, use these equalities
to define all $\gamma_n$. More precisely, if
$n = a_0 + a_1p + \ldots + a_e p^e$ with $a_i \in \{0, \ldots, p - 1\}$ then
we set
$$
\gamma_n(x) = c_n x^{a_0} \delta(x)^{a_1} \ldots \delta^e(x)^{a_e}
$$
for $c_n \in \mathbf{Z}_{(p)}$ defined by
$$
c_n =
{(p!)^{a_1 + a_2(1 + p) + \ldots + a_e(1 + \ldots + p^{e - 1})}}/{n!}.
$$
Now we have to show the axioms (1) -- (5) of a divided power structure, see
Definition \ref{definition-divided-powers}. We observe that (1) and (3) are
immediate. Verification of (2) and (5) is by a direct calculation which
we omit. Let $x, y \in I$. We claim there is a ring map
$$
\varphi : \mathbf{Z}_{(p)}\langle u, v \rangle \longrightarrow A
$$
which maps $u^{[n]}$ to $\gamma_n(x)$ and $v^{[n]}$ to $\gamma_n(y)$.
By construction of $\mathbf{Z}_{(p)}\langle u, v \rangle$ this means
we have to check that
$$
\gamma_n(x)\gamma_m(x) = \frac{(n + m)!}{n!m!} \gamma_{n + m}(x)
$$
in $A$ and similarly for $y$. This is true because (2) holds for $\gamma$.
Let $\epsilon$ denote the divided power structure on the
ideal $\mathbf{Z}_{(p)}\langle u, v\rangle_{+}$ of
$\mathbf{Z}_{(p)}\langle u, v\rangle$.
Next, we claim that $\varphi(\epsilon_n(f)) = \gamma_n(\varphi(f))$
for $f \in \mathbf{Z}_{(p)}\langle u, v\rangle_{+}$ and all $n$.
This is clear for $n = 0, 1, \ldots, p - 1$. For $n = p$ it suffices
to prove it for a set of generators of the ideal
$\mathbf{Z}_{(p)}\langle u, v\rangle_{+}$ because both $\epsilon_p$
and $\gamma_p = \delta$ satisfy properties (1) and (3) of the lemma.
Hence it suffices to prove that
$\gamma_p(\gamma_n(x)) = \frac{(pn)!}{p!(n!)^p}\gamma_{pn}(x)$ and
similarly for $y$, which follows as (5) holds for $\gamma$.
Now, if $n = a_0 + a_1p + \ldots + a_e p^e$
is an arbitrary integer written in $p$-adic expansion as above, then
$$
\epsilon_n(f) =
c_n f^{a_0} \gamma_p(f)^{a_1} \ldots \gamma_p^e(f)^{a_e}
$$
because $\epsilon$ is a divided power structure. Hence we see that
$\varphi(\epsilon_n(f)) = \gamma_n(\varphi(f))$ holds for all $n$.
Applying this for $f = u + v$ we see that axiom (4) for $\gamma$
follows from the fact that $\epsilon$ is a divided power structure.
\end{proof}
\section{Tate resolutions}
\label{section-tate}
\noindent
In this section we briefly discuss the resolutions constructed in
\cite{Tate-homology} and \cite{AH}
which combine divided power structures with
differential graded algebras.
In this section we will use {\it homological notation} for
differential graded algebras.
Our differential graded algebras will sit in nonnegative homological
degrees. Thus our differential graded algebras $(A, \text{d})$
will be given as chain complexes
$$
\ldots \to A_2 \to A_1 \to A_0 \to 0 \to \ldots
$$
endowed with a multiplication.
\medskip\noindent
Let $R$ be a ring (commutative, as usual).
In this section we will often consider graded
$R$-algebras $A = \bigoplus_{d \geq 0} A_d$ whose components are
zero in negative degrees. We will set $A_+ = \bigoplus_{d > 0} A_d$.
We will write $A_{even} = \bigoplus_{d \geq 0} A_{2d}$ and
$A_{odd} = \bigoplus_{d \geq 0} A_{2d + 1}$.
Recall that $A$ is graded commutative if
$x y = (-1)^{\deg(x)\deg(y)} y x$ for homogeneous elements $x, y$.
Recall that $A$ is strictly graded commutative if in addition
$x^2 = 0$ for homogeneous elements $x$ of odd degree. Finally, to understand
the following definition, keep in mind that $\gamma_n(x) = x^n/n!$
if $A$ is a $\mathbf{Q}$-algebra.
\begin{definition}
\label{definition-divided-powers-graded}
Let $R$ be a ring. Let $A = \bigoplus_{d \geq 0} A_d$ be a graded
$R$-algebra which is strictly graded commutative. A collection of maps
$\gamma_n : A_{even, +} \to A_{even, +}$ defined for all $n > 0$ is called
a {\it divided power structure} on $A$ if we have
\begin{enumerate}
\item $\gamma_n(x) \in A_{2nd}$ if $x \in A_{2d}$,
\item $\gamma_1(x) = x$ for any $x$, we also set $\gamma_0(x) = 1$,
\item $\gamma_n(x)\gamma_m(x) = \frac{(n + m)!}{n! m!} \gamma_{n + m}(x)$,
\item $\gamma_n(xy) = x^n \gamma_n(y)$ for all $x \in A_{even}$ and
$y \in A_{even, +}$,
\item $\gamma_n(xy) = 0$ if $x, y \in A_{odd}$ homogeneous and $n > 1$
\item if $x, y \in A_{even, +}$ then
$\gamma_n(x + y) = \sum_{i = 0, \ldots, n} \gamma_i(x)\gamma_{n - i}(y)$,
\item $\gamma_n(\gamma_m(x)) =
\frac{(nm)!}{n! (m!)^n} \gamma_{nm}(x)$ for $x \in A_{even, +}$.
\end{enumerate}
\end{definition}
\noindent
Observe that conditions (2), (3), (4), (6), and (7) imply that
$\gamma$ is a ``usual'' divided power structure on the ideal
$A_{even, +}$ of the (commutative) ring $A_{even}$, see
Sections \ref{section-divided-powers},
\ref{section-divided-power-rings},
\ref{section-extend}, and
\ref{section-divided-power-polynomial-ring}.
In particular, we have $n! \gamma_n(x) = x^n$ for all $x \in A_{even, +}$.
Condition (1) states that $\gamma$ is compatible with grading and condition
(5) tells us $\gamma_n$ for $n > 1$ vanishes on products
of homogeneous elements of odd degree. But note that it may happen
that
$$
\gamma_2(z_1 z_2 + z_3 z_4) = z_1z_2z_3z_4
$$
is nonzero if $z_1, z_2, z_3, z_4$ are homogeneous elements of odd degree.
\begin{example}[Adjoining odd variable]
\label{example-adjoining-odd}
Let $R$ be a ring. Let $(A, \gamma)$ be a strictly graded commutative
graded $R$-algebra endowed with a divided power structure as in the
definition above. Let $d > 0$ be an odd integer.
In this setting we can adjoin a variable $T$ of degree $d$ to $A$.
Namely, set
$$
A\langle T \rangle = A \oplus AT
$$
with grading given by $A\langle T \rangle_m = A_m \oplus A_{m - d}T$.
We claim there is a unique divided power structure on
$A\langle T \rangle$ compatible with the given divided power
structure on $A$. Namely, we set
$$
\gamma_n(x + yT) = \gamma_n(x) + \gamma_{n - 1}(x)yT
$$
for $x \in A_{even, +}$ and $y \in A_{odd}$.
\end{example}
\begin{example}[Adjoining even variable]
\label{example-adjoining-even}
Let $R$ be a ring. Let $(A, \gamma)$ be a strictly graded commutative
graded $R$-algebra endowed with a divided power structure as in the
definition above. Let $d > 0$ be an even integer.
In this setting we can adjoin a variable $T$ of degree $d$ to $A$.
Namely, set
$$
A\langle T \rangle = A \oplus AT \oplus AT^{(2)} \oplus AT^{(3)} \oplus \ldots
$$
with multiplication given by
$$
T^{(n)} T^{(m)} = \frac{(n + m)!}{n!m!} T^{(n + m)}
$$
and with grading given by
$$
A\langle T \rangle_m =
A_m \oplus A_{m - d}T \oplus A_{m - 2d}T^{(2)} \oplus \ldots
$$