-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathevaluate_off_policy_estimators.py
200 lines (187 loc) · 7.04 KB
/
evaluate_off_policy_estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
from pathlib import Path
from joblib import delayed
from joblib import Parallel
import numpy as np
from pandas import DataFrame
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
import yaml
from obp.dataset import logistic_reward_function
from obp.dataset import SyntheticBanditDataset
from obp.ope import DirectMethod
from obp.ope import DoublyRobust
from obp.ope import DoublyRobustWithShrinkageTuning
from obp.ope import InverseProbabilityWeighting
from obp.ope import OffPolicyEvaluation
from obp.ope import RegressionModel
from obp.ope import SelfNormalizedDoublyRobust
from obp.ope import SelfNormalizedInverseProbabilityWeighting
from obp.ope import SwitchDoublyRobustTuning
from obp.policy import IPWLearner
# hyperparameters of the regression model used in model dependent OPE estimators
with open("./conf/hyperparams.yaml", "rb") as f:
hyperparams = yaml.safe_load(f)
base_model_dict = dict(
logistic_regression=LogisticRegression,
lightgbm=GradientBoostingClassifier,
random_forest=RandomForestClassifier,
)
# compared OPE estimators
ope_estimators = [
DirectMethod(),
InverseProbabilityWeighting(),
SelfNormalizedInverseProbabilityWeighting(),
DoublyRobust(),
SelfNormalizedDoublyRobust(),
SwitchDoublyRobustTuning(lambdas=[10, 50, 100, 500, 1000, 5000, 10000, np.inf]),
DoublyRobustWithShrinkageTuning(
lambdas=[10, 50, 100, 500, 1000, 5000, 10000, np.inf]
),
]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="evaluate the accuracy of OPE estimators on synthetic bandit data."
)
parser.add_argument(
"--n_runs", type=int, default=1, help="number of simulations in the experiment."
)
parser.add_argument(
"--n_rounds",
type=int,
default=10000,
help="sample size of logged bandit data.",
)
parser.add_argument(
"--n_actions",
type=int,
default=10,
help="number of actions.",
)
parser.add_argument(
"--dim_context",
type=int,
default=5,
help="dimensions of context vectors.",
)
parser.add_argument(
"--beta",
type=float,
default=3,
help="inverse temperature parameter to control the behavior policy.",
)
parser.add_argument(
"--base_model_for_evaluation_policy",
type=str,
choices=["logistic_regression", "lightgbm", "random_forest"],
required=True,
help="base ML model for evaluation policy, logistic_regression, random_forest or lightgbm.",
)
parser.add_argument(
"--base_model_for_reg_model",
type=str,
choices=["logistic_regression", "lightgbm", "random_forest"],
required=True,
help="base ML model for regression model, logistic_regression, random_forest or lightgbm.",
)
parser.add_argument(
"--n_jobs",
type=int,
default=1,
help="the maximum number of concurrently running jobs.",
)
parser.add_argument("--random_state", type=int, default=12345)
args = parser.parse_args()
print(args)
# configurations
n_runs = args.n_runs
n_rounds = args.n_rounds
n_actions = args.n_actions
dim_context = args.dim_context
beta = args.beta
base_model_for_evaluation_policy = args.base_model_for_evaluation_policy
base_model_for_reg_model = args.base_model_for_reg_model
n_jobs = args.n_jobs
random_state = args.random_state
def process(i: int):
# synthetic data generator
dataset = SyntheticBanditDataset(
n_actions=n_actions,
dim_context=dim_context,
reward_function=logistic_reward_function,
beta=beta,
random_state=i,
)
# define evaluation policy using IPWLearner
evaluation_policy = IPWLearner(
n_actions=dataset.n_actions,
base_classifier=base_model_dict[base_model_for_evaluation_policy](
**hyperparams[base_model_for_evaluation_policy]
),
)
# sample new training and test sets of synthetic logged bandit data
bandit_feedback_train = dataset.obtain_batch_bandit_feedback(n_rounds=n_rounds)
bandit_feedback_test = dataset.obtain_batch_bandit_feedback(n_rounds=n_rounds)
# train the evaluation policy on the training set of the synthetic logged bandit data
evaluation_policy.fit(
context=bandit_feedback_train["context"],
action=bandit_feedback_train["action"],
reward=bandit_feedback_train["reward"],
pscore=bandit_feedback_train["pscore"],
)
# predict the action decisions for the test set of the synthetic logged bandit data
action_dist = evaluation_policy.predict_proba(
context=bandit_feedback_test["context"],
)
# estimate the reward function of the test set of synthetic bandit feedback with ML model
regression_model = RegressionModel(
n_actions=dataset.n_actions,
action_context=dataset.action_context,
base_model=base_model_dict[base_model_for_reg_model](
**hyperparams[base_model_for_reg_model]
),
)
estimated_rewards_by_reg_model = regression_model.fit_predict(
context=bandit_feedback_test["context"],
action=bandit_feedback_test["action"],
reward=bandit_feedback_test["reward"],
n_folds=3, # 3-fold cross-fitting
random_state=random_state,
)
# evaluate estimators' performances using relative estimation error (relative-ee)
ope = OffPolicyEvaluation(
bandit_feedback=bandit_feedback_test,
ope_estimators=ope_estimators,
)
metric_i = ope.evaluate_performance_of_estimators(
ground_truth_policy_value=dataset.calc_ground_truth_policy_value(
expected_reward=bandit_feedback_test["expected_reward"],
action_dist=action_dist,
),
action_dist=action_dist,
estimated_rewards_by_reg_model=estimated_rewards_by_reg_model,
metric="relative-ee",
)
return metric_i
processed = Parallel(
n_jobs=n_jobs,
verbose=50,
)([delayed(process)(i) for i in np.arange(n_runs)])
metric_dict = {est.estimator_name: dict() for est in ope_estimators}
for i, metric_i in enumerate(processed):
for (
estimator_name,
relative_ee_,
) in metric_i.items():
metric_dict[estimator_name][i] = relative_ee_
results_df = DataFrame(metric_dict).describe().T.round(6)
print("=" * 45)
print(f"random_state={random_state}")
print("-" * 45)
print(results_df[["mean", "std"]])
print("=" * 45)
# save results of the evaluation of OPE in './logs' directory.
log_path = Path("./logs")
log_path.mkdir(exist_ok=True, parents=True)
results_df.to_csv(log_path / "evaluation_of_ope_results.csv")