-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
152 lines (105 loc) · 4.18 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
title: ""
author: ""
date: "`r format(Sys.time(), '%B %d, %Y %H:%M')`"
output:
html_document:
number_sections: false
self_contained: TRUE
code_folding: hide
toc: TRUE
toc_float: TRUE
css: www/web_report.css
editor_options:
chunk_output_type: console
---
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Lato" />
![](www/images/urban-institute-logo.png)
```{r rmarkdown-setup, echo = FALSE}
knitr::opts_chunk$set(warning = FALSE)
knitr::opts_chunk$set(message = FALSE)
```
# RAADS Grad School Survey
This year, we sent around a brief survey to better inform the annual RAADS grad school panel. The reults of the survey are presented below.
```{r setup}
options(scipen = 999)
library(tidyverse)
library(urbnthemes)
set_urbn_defaults("print")
# load data
source("code/analyze-survey-data.R")
```
### Degrees
Of the four degrees listed on the survey, `r tolower((filter(response_data, question == "degree") %>% arrange(desc(n)) %>% pull(response))[1])` was the most common degree selected. There was one response outside the set answers, expresseing interest in learning about certificates that could be earned while working at Urban.
```{r degree-plot}
response_data %>%
filter(question == "degree") %>%
ggplot(mapping = aes(x = reorder(response, desc(n)), y = n)) +
geom_col() +
geom_text(mapping = aes(label = n),
vjust = -1, size = 4) +
scale_y_continuous(expand = expand_scale(mult = c(0, .1))) +
urbnthemes::remove_axis() +
labs(x = NULL, y = NULL,
title = "What kind of degree(s) are you interested in?")
```
### Fields
`r (filter(response_data, question == "field") %>% arrange(desc(n)) %>% pull(response))[1]` was the most common field RAADS were interested in. `r filter(response_data, response == (filter(response_data, question == "field") %>% arrange(desc(n)) %>% pull(response))[1]) %>% pull(n)` of `r mean(response_data$total)` total respondents selected it. Second and third place went to `r (filter(response_data, question == "field") %>% arrange(desc(n)) %>% pull(response))[2]` and `r (filter(response_data, question == "field") %>% arrange(desc(n)) %>% pull(response))[3]`.
```{r field-plot}
annotation_text <- paste0(mean(response_data$total),
" total \n respondents")
response_data %>%
filter(question == "field") %>%
ggplot(mapping = aes(x = reorder(response, desc(n)), y = n)) +
geom_col() +
geom_text(mapping = aes(label = n),
hjust = -.5, size = 3) +
scale_y_continuous(expand = expand_scale(mult = c(0, .1)),
limits = c(0, 42)) +
geom_hline(aes(yintercept = total),
linetype = "dotted") +
annotate(geom = "text", x = "Math or statistics",
y = mean(response_data$total) - .5,
label = annotation_text,
hjust = 1) +
coord_flip() +
remove_axis(axis = "x", flip = TRUE) +
labs(x = NULL, y = NULL,
title = "What field(s) are you interested in?") +
theme(plot.title = element_text(hjust = -.75))
```
### Process
The survey asked which parts of the process respondents would like advice on. Most RAADS indicated that they were looking for advice on `r tolower((filter(response_data, question == "process") %>% arrange(desc(n)) %>% pull(response))[1])`.
```{r process-plot}
response_data %>%
filter(question == "process") %>%
ggplot(mapping = aes(x = reorder(response, desc(n)), y = n)) +
geom_col() +
geom_text(mapping = aes(label = n),
vjust = -1, size = 4) +
scale_y_continuous(expand = expand_scale(mult = c(0, .1))) +
urbnthemes::remove_axis() +
labs(x = NULL, y = NULL,
title = "What part of the process are you looking for advice on?")
```
### Other
The following comments were added in addition to the questions posed:
```{r other, results=FALSE}
# make vector of other responses
other <- c(
data %>%
filter(!is.na(other),
other != "nope") %>%
pull(other),
"Financial trade-offs between stopping work and the value of the degree")
# this is to make sure we use the right number of bullets
length(other)
```
* `r other[1]`
* `r other[2]`
* `r other[3]`
* `r other[4]`
* `r other[5]`
* `r other[6]`
* `r other[7]`
* `r other[8]`