forked from openai/glow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfops.py
499 lines (411 loc) · 16.8 KB
/
tfops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import add_arg_scope, arg_scope
from tensorflow.contrib.layers import variance_scaling_initializer
import numpy as np
import horovod.tensorflow as hvd
# Debugging function
do_print_act_stats = True
def print_act_stats(x, _str=""):
if not do_print_act_stats:
return x
if hvd.rank() != 0:
return x
if len(x.get_shape()) == 1:
x_mean, x_var = tf.nn.moments(x, [0], keep_dims=True)
if len(x.get_shape()) == 2:
x_mean, x_var = tf.nn.moments(x, [0], keep_dims=True)
if len(x.get_shape()) == 4:
x_mean, x_var = tf.nn.moments(x, [0, 1, 2], keep_dims=True)
stats = [tf.reduce_min(x_mean), tf.reduce_mean(x_mean), tf.reduce_max(x_mean),
tf.reduce_min(tf.sqrt(x_var)), tf.reduce_mean(tf.sqrt(x_var)), tf.reduce_max(tf.sqrt(x_var))]
return tf.Print(x, stats, "["+_str+"] "+x.name)
# Allreduce methods
def allreduce_sum(x):
if hvd.size() == 1:
return x
return hvd.mpi_ops._allreduce(x)
def allreduce_mean(x):
x = allreduce_sum(x) / hvd.size()
return x
def default_initial_value(shape, std=0.05):
return tf.random_normal(shape, 0., std)
def default_initializer(std=0.05):
return tf.random_normal_initializer(0., std)
def int_shape(x):
if str(x.get_shape()[0]) != '?':
return list(map(int, x.get_shape()))
return [-1]+list(map(int, x.get_shape()[1:]))
# wrapper tf.get_variable, augmented with 'init' functionality
# Get variable with data dependent init
@add_arg_scope
def get_variable_ddi(name, shape, initial_value, dtype=tf.float32, init=False, trainable=True):
w = tf.get_variable(name, shape, dtype, None, trainable=trainable)
if init:
w = w.assign(initial_value)
with tf.control_dependencies([w]):
return w
return w
# Activation normalization
# Convenience function that does centering+scaling
@add_arg_scope
def actnorm(name, x, scale=1., logdet=None, logscale_factor=3., batch_variance=False, reverse=False, init=False, trainable=True):
if arg_scope([get_variable_ddi], trainable=trainable):
if not reverse:
x = actnorm_center(name+"_center", x, reverse)
x = actnorm_scale(name+"_scale", x, scale, logdet,
logscale_factor, batch_variance, reverse, init)
if logdet != None:
x, logdet = x
else:
x = actnorm_scale(name + "_scale", x, scale, logdet,
logscale_factor, batch_variance, reverse, init)
if logdet != None:
x, logdet = x
x = actnorm_center(name+"_center", x, reverse)
if logdet != None:
return x, logdet
return x
# Activation normalization
@add_arg_scope
def actnorm_center(name, x, reverse=False):
shape = x.get_shape()
with tf.variable_scope(name):
assert len(shape) == 2 or len(shape) == 4
if len(shape) == 2:
x_mean = tf.reduce_mean(x, [0], keepdims=True)
b = get_variable_ddi(
"b", (1, int_shape(x)[1]), initial_value=-x_mean)
elif len(shape) == 4:
x_mean = tf.reduce_mean(x, [0, 1, 2], keepdims=True)
b = get_variable_ddi(
"b", (1, 1, 1, int_shape(x)[3]), initial_value=-x_mean)
if not reverse:
x += b
else:
x -= b
return x
# Activation normalization
@add_arg_scope
def actnorm_scale(name, x, scale=1., logdet=None, logscale_factor=3., batch_variance=False, reverse=False, init=False, trainable=True):
shape = x.get_shape()
with tf.variable_scope(name), arg_scope([get_variable_ddi], trainable=trainable):
assert len(shape) == 2 or len(shape) == 4
if len(shape) == 2:
x_var = tf.reduce_mean(x**2, [0], keepdims=True)
logdet_factor = 1
_shape = (1, int_shape(x)[1])
elif len(shape) == 4:
x_var = tf.reduce_mean(x**2, [0, 1, 2], keepdims=True)
logdet_factor = int(shape[1])*int(shape[2])
_shape = (1, 1, 1, int_shape(x)[3])
if batch_variance:
x_var = tf.reduce_mean(x**2, keepdims=True)
if init and False:
# MPI all-reduce
x_var = allreduce_mean(x_var)
# Somehow this also slows down graph when not initializing
# (it's not optimized away?)
if True:
logs = get_variable_ddi("logs", _shape, initial_value=tf.log(
scale/(tf.sqrt(x_var)+1e-6))/logscale_factor)*logscale_factor
if not reverse:
x = x * tf.exp(logs)
else:
x = x * tf.exp(-logs)
else:
# Alternative, doesn't seem to do significantly worse or better than the logarithmic version above
s = get_variable_ddi("s", _shape, initial_value=scale /
(tf.sqrt(x_var) + 1e-6) / logscale_factor)*logscale_factor
logs = tf.log(tf.abs(s))
if not reverse:
x *= s
else:
x /= s
if logdet != None:
dlogdet = tf.reduce_sum(logs) * logdet_factor
if reverse:
dlogdet *= -1
return x, logdet + dlogdet
return x
# Linear layer with layer norm
@add_arg_scope
def linear(name, x, width, do_weightnorm=True, do_actnorm=True, initializer=None, scale=1.):
initializer = initializer or default_initializer()
with tf.variable_scope(name):
n_in = int(x.get_shape()[1])
w = tf.get_variable("W", [n_in, width],
tf.float32, initializer=initializer)
if do_weightnorm:
w = tf.nn.l2_normalize(w, [0])
x = tf.matmul(x, w)
x += tf.get_variable("b", [1, width],
initializer=tf.zeros_initializer())
if do_actnorm:
x = actnorm("actnorm", x, scale)
return x
# Linear layer with zero init
@add_arg_scope
def linear_zeros(name, x, width, logscale_factor=3):
with tf.variable_scope(name):
n_in = int(x.get_shape()[1])
w = tf.get_variable("W", [n_in, width], tf.float32,
initializer=tf.zeros_initializer())
x = tf.matmul(x, w)
x += tf.get_variable("b", [1, width],
initializer=tf.zeros_initializer())
x *= tf.exp(tf.get_variable("logs",
[1, width], initializer=tf.zeros_initializer()) * logscale_factor)
return x
# Slow way to add edge padding
def add_edge_padding(x, filter_size):
assert filter_size[0] % 2 == 1
if filter_size[0] == 1 and filter_size[1] == 1:
return x
a = (filter_size[0] - 1) // 2 # vertical padding size
b = (filter_size[1] - 1) // 2 # horizontal padding size
if True:
x = tf.pad(x, [[0, 0], [a, a], [b, b], [0, 0]])
name = "_".join([str(dim) for dim in [a, b, *int_shape(x)[1:3]]])
pads = tf.get_collection(name)
if not pads:
if hvd.rank() == 0:
print("Creating pad", name)
pad = np.zeros([1] + int_shape(x)[1:3] + [1], dtype='float32')
pad[:, :a, :, 0] = 1.
pad[:, -a:, :, 0] = 1.
pad[:, :, :b, 0] = 1.
pad[:, :, -b:, 0] = 1.
pad = tf.convert_to_tensor(pad)
tf.add_to_collection(name, pad)
else:
pad = pads[0]
pad = tf.tile(pad, [tf.shape(x)[0], 1, 1, 1])
x = tf.concat([x, pad], axis=3)
else:
pad = tf.pad(tf.zeros_like(x[:, :, :, :1]) - 1,
[[0, 0], [a, a], [b, b], [0, 0]]) + 1
x = tf.pad(x, [[0, 0], [a, a], [b, b], [0, 0]])
x = tf.concat([x, pad], axis=3)
return x
@add_arg_scope
def conv2d(name, x, width, filter_size=[3, 3], stride=[1, 1], pad="SAME", do_weightnorm=False, do_actnorm=True, context1d=None, skip=1, edge_bias=True):
with tf.variable_scope(name):
if edge_bias and pad == "SAME":
x = add_edge_padding(x, filter_size)
pad = 'VALID'
n_in = int(x.get_shape()[3])
stride_shape = [1] + stride + [1]
filter_shape = filter_size + [n_in, width]
w = tf.get_variable("W", filter_shape, tf.float32,
initializer=default_initializer())
if do_weightnorm:
w = tf.nn.l2_normalize(w, [0, 1, 2])
if skip == 1:
x = tf.nn.conv2d(x, w, stride_shape, pad, data_format='NHWC')
else:
assert stride[0] == 1 and stride[1] == 1
x = tf.nn.atrous_conv2d(x, w, skip, pad)
if do_actnorm:
x = actnorm("actnorm", x)
else:
x += tf.get_variable("b", [1, 1, 1, width],
initializer=tf.zeros_initializer())
if context1d != None:
x += tf.reshape(linear("context", context1d,
width), [-1, 1, 1, width])
return x
@add_arg_scope
def separable_conv2d(name, x, width, filter_size=[3, 3], stride=[1, 1], padding="SAME", do_actnorm=True, std=0.05):
n_in = int(x.get_shape()[3])
with tf.variable_scope(name):
assert filter_size[0] % 2 == 1 and filter_size[1] % 2 == 1
strides = [1] + stride + [1]
w1_shape = filter_size + [n_in, 1]
w1_init = np.zeros(w1_shape, dtype='float32')
w1_init[(filter_size[0]-1)//2, (filter_size[1]-1)//2, :,
:] = 1. # initialize depthwise conv as identity
w1 = tf.get_variable("W1", dtype=tf.float32, initializer=w1_init)
w2_shape = [1, 1, n_in, width]
w2 = tf.get_variable("W2", w2_shape, tf.float32,
initializer=default_initializer(std))
x = tf.nn.separable_conv2d(
x, w1, w2, strides, padding, data_format='NHWC')
if do_actnorm:
x = actnorm("actnorm", x)
else:
x += tf.get_variable("b", [1, 1, 1, width],
initializer=tf.zeros_initializer(std))
return x
@add_arg_scope
def conv2d_zeros(name, x, width, filter_size=[3, 3], stride=[1, 1], pad="SAME", logscale_factor=3, skip=1, edge_bias=True):
with tf.variable_scope(name):
if edge_bias and pad == "SAME":
x = add_edge_padding(x, filter_size)
pad = 'VALID'
n_in = int(x.get_shape()[3])
stride_shape = [1] + stride + [1]
filter_shape = filter_size + [n_in, width]
w = tf.get_variable("W", filter_shape, tf.float32,
initializer=tf.zeros_initializer())
if skip == 1:
x = tf.nn.conv2d(x, w, stride_shape, pad, data_format='NHWC')
else:
assert stride[0] == 1 and stride[1] == 1
x = tf.nn.atrous_conv2d(x, w, skip, pad)
x += tf.get_variable("b", [1, 1, 1, width],
initializer=tf.zeros_initializer())
x *= tf.exp(tf.get_variable("logs",
[1, width], initializer=tf.zeros_initializer()) * logscale_factor)
return x
# 2X nearest-neighbour upsampling, also inspired by Jascha Sohl-Dickstein's code
def upsample2d_nearest_neighbour(x):
shape = x.get_shape()
n_batch = int(shape[0])
height = int(shape[1])
width = int(shape[2])
n_channels = int(shape[3])
x = tf.reshape(x, (n_batch, height, 1, width, 1, n_channels))
x = tf.concat(2, [x, x])
x = tf.concat(4, [x, x])
x = tf.reshape(x, (n_batch, height*2, width*2, n_channels))
return x
def upsample(x, factor=2):
shape = x.get_shape()
height = int(shape[1])
width = int(shape[2])
x = tf.image.resize_nearest_neighbor(x, [height * factor, width * factor])
return x
def squeeze2d(x, factor=2):
assert factor >= 1
if factor == 1:
return x
shape = x.get_shape()
height = int(shape[1])
width = int(shape[2])
n_channels = int(shape[3])
assert height % factor == 0 and width % factor == 0
x = tf.reshape(x, [-1, height//factor, factor,
width//factor, factor, n_channels])
x = tf.transpose(x, [0, 1, 3, 5, 2, 4])
x = tf.reshape(x, [-1, height//factor, width //
factor, n_channels*factor*factor])
return x
def unsqueeze2d(x, factor=2):
assert factor >= 1
if factor == 1:
return x
shape = x.get_shape()
height = int(shape[1])
width = int(shape[2])
n_channels = int(shape[3])
assert n_channels >= 4 and n_channels % 4 == 0
x = tf.reshape(
x, (-1, height, width, int(n_channels/factor**2), factor, factor))
x = tf.transpose(x, [0, 1, 4, 2, 5, 3])
x = tf.reshape(x, (-1, int(height*factor),
int(width*factor), int(n_channels/factor**2)))
return x
# Reverse features across channel dimension
def reverse_features(name, h, reverse=False):
return h[:, :, :, ::-1]
# Shuffle across the channel dimension
def shuffle_features(name, h, indices=None, return_indices=False, reverse=False):
with tf.variable_scope(name):
rng = np.random.RandomState(
(abs(hash(tf.get_variable_scope().name))) % 10000000)
if indices == None:
# Create numpy and tensorflow variables with indices
n_channels = int(h.get_shape()[-1])
indices = list(range(n_channels))
rng.shuffle(indices)
# Reverse it
indices_inverse = [0]*n_channels
for i in range(n_channels):
indices_inverse[indices[i]] = i
tf_indices = tf.get_variable("indices", dtype=tf.int32, initializer=np.asarray(
indices, dtype='int32'), trainable=False)
tf_indices_reverse = tf.get_variable("indices_inverse", dtype=tf.int32, initializer=np.asarray(
indices_inverse, dtype='int32'), trainable=False)
_indices = tf_indices
if reverse:
_indices = tf_indices_reverse
if len(h.get_shape()) == 2:
# Slice
h = tf.transpose(h)
h = tf.gather(h, _indices)
h = tf.transpose(h)
elif len(h.get_shape()) == 4:
# Slice
h = tf.transpose(h, [3, 1, 2, 0])
h = tf.gather(h, _indices)
h = tf.transpose(h, [3, 1, 2, 0])
if return_indices:
return h, indices
return h
def embedding(name, y, n_y, width):
with tf.variable_scope(name):
params = tf.get_variable(
"embedding", [n_y, width], initializer=default_initializer())
embeddings = tf.gather(params, y)
return embeddings
# Random variables
def flatten_sum(logps):
if len(logps.get_shape()) == 2:
return tf.reduce_sum(logps, [1])
elif len(logps.get_shape()) == 4:
return tf.reduce_sum(logps, [1, 2, 3])
else:
raise Exception()
def standard_gaussian(shape):
return gaussian_diag(tf.zeros(shape), tf.zeros(shape))
def gaussian_diag(mean, logsd):
class o(object):
pass
o.mean = mean
o.logsd = logsd
o.eps = tf.random_normal(tf.shape(mean))
o.sample = mean + tf.exp(logsd) * o.eps
o.sample2 = lambda eps: mean + tf.exp(logsd) * eps
o.logps = lambda x: -0.5 * \
(np.log(2 * np.pi) + 2. * logsd + (x - mean) ** 2 / tf.exp(2. * logsd))
o.logp = lambda x: flatten_sum(o.logps(x))
o.get_eps = lambda x: (x - mean) / tf.exp(logsd)
return o
# def discretized_logistic_old(mean, logscale, binsize=1 / 256.0, sample=None):
# scale = tf.exp(logscale)
# sample = (tf.floor(sample / binsize) * binsize - mean) / scale
# logp = tf.log(tf.sigmoid(sample + binsize / scale) - tf.sigmoid(sample) + 1e-7)
# return tf.reduce_sum(logp, [1, 2, 3])
def discretized_logistic(mean, logscale, binsize=1. / 256):
class o(object):
pass
o.mean = mean
o.logscale = logscale
scale = tf.exp(logscale)
def logps(x):
x = (x - mean) / scale
return tf.log(tf.sigmoid(x + binsize / scale) - tf.sigmoid(x) + 1e-7)
o.logps = logps
o.logp = lambda x: flatten_sum(logps(x))
return o
def _symmetric_matrix_square_root(mat, eps=1e-10):
"""Compute square root of a symmetric matrix.
Note that this is different from an elementwise square root. We want to
compute M' where M' = sqrt(mat) such that M' * M' = mat.
Also note that this method **only** works for symmetric matrices.
Args:
mat: Matrix to take the square root of.
eps: Small epsilon such that any element less than eps will not be square
rooted to guard against numerical instability.
Returns:
Matrix square root of mat.
"""
# Unlike numpy, tensorflow's return order is (s, u, v)
s, u, v = tf.svd(mat)
# sqrt is unstable around 0, just use 0 in such case
si = tf.where(tf.less(s, eps), s, tf.sqrt(s))
# Note that the v returned by Tensorflow is v = V
# (when referencing the equation A = U S V^T)
# This is unlike Numpy which returns v = V^T
return tf.matmul(
tf.matmul(u, tf.diag(si)), v, transpose_b=True)