Skip to content

Latest commit

 

History

History
347 lines (234 loc) · 27.6 KB

INSTALL_static.md

File metadata and controls

347 lines (234 loc) · 27.6 KB

ansible-hortonworks installation guide

  • These Ansible playbooks will deploy a Hortonworks cluster (either Hortonworks Data Platform or Hortonworks DataFlow) using Ambari Blueprints and a static inventory.

  • What is a static inventory is described in the Ansible Documentation.

  • Using the static inventory implies that the nodes are already built and accessible via SSH.


Workstation setup

Before deploying anything, the build node / workstation from where Ansible will run should be prepared.

This node must be able to connect to the cluster nodes via SSH.

It can even be one of the cluster nodes.

macOS

  1. Install the required packages

    brew install python
    pip2 install virtualenv
    pip2 install virtualenvwrapper
    
  2. Create and source the Python virtual environment

    virtualenv ~/ansible; source ~/ansible/bin/activate
    
  3. Install the required Python packages inside the virtualenv

    pip install setuptools --upgrade
    pip install pip --upgrade   
    pip install ansible
    
  4. (Optional) Generate the SSH private key

    The build node / workstation will need to login via SSH to the cluster nodes.

    This can be done either by using a username and a password or with SSH keys.

    For the SSH keys method, the SSH private key needs to be placed or generated on the workstation, normally under .ssh, for example: ~/.ssh/id_rsa.

    To generate a new key, run the following:

    ssh-keygen -q -t rsa -f ~/.ssh/id_rsa
    

CentOS/RHEL 7

  1. Install the required packages

    sudo yum -y install epel-release || sudo yum -y install http://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
    sudo yum -y install gcc gcc-c++ python-virtualenv python-pip python-devel libffi-devel openssl-devel libyaml-devel sshpass git vim-enhanced
    
  2. Create and source the Python virtual environment

    virtualenv ~/ansible; source ~/ansible/bin/activate
    
  3. Install the required Python packages inside the virtualenv

    pip install setuptools --upgrade
    pip install pip --upgrade   
    pip install ansible
    
  4. (Optional) Generate the SSH private key

    The build node / workstation will need to login via SSH to the cluster nodes.

    This can be done either by using a username and a password or with SSH keys.

    For the SSH keys method, the SSH private key needs to be placed or generated on the workstation, normally under .ssh, for example: ~/.ssh/id_rsa.

    To generate a new key, run the following:

    ssh-keygen -q -t rsa -f ~/.ssh/id_rsa
    

Ubuntu 14+

  1. Install required packages:

    sudo apt-get update
    sudo apt-get -y install unzip python-virtualenv python-pip python-dev sshpass git libffi-dev libssl-dev libyaml-dev vim
    
  2. Create and source the Python virtual environment

    virtualenv ~/ansible; source ~/ansible/bin/activate
    
  3. Install the required Python packages inside the virtualenv

    pip install setuptools --upgrade
    pip install pip --upgrade
    pip install ansible
    
  4. (Optional) Generate the SSH private key

    The build node / workstation will need to login via SSH to the cluster nodes.

    This can be done either by using a username and a password or with SSH keys.

    For the SSH keys method, the SSH private key needs to be placed or generated on the build node / workstation, normally under .ssh, for example: ~/.ssh/id_rsa.

    To generate a new key, run the following:

    ssh-keygen -q -t rsa -f ~/.ssh/id_rsa -C google-user
    

Clone the repository

Upload the ansible-hortonworks repository to the build node / workstation, preferable under the home folder.

If the build node / workstation can directly download the repository, run the following:

cd && git clone https://github.com/hortonworks/ansible-hortonworks.git

If your GitHub SSH key is installed, you can use the SSH link:

cd && git clone [email protected]:hortonworks/ansible-hortonworks.git

Set the static inventory

Modify the file at ~/ansible-hortonworks/inventory/static to set the static inventory.

The static inventory puts the nodes in different groups as described in the Ansible Documentation.

Each group defines a specific node role, for example master, slave, edge, but the names of the groups should be the same as the host_groups in the Ambari Blueprint.

There can be any number of Ansible groups / Ambari host_groups and the groups / host_groups can have any names and any number of nodes but they should correspond with the host_groups in the Ambari Blueprint and respect the Blueprint spec (for example, there shouldn't be more than 1 node in the host_group which contains the AMBARI_SERVER component, but there can be 100+ nodes in the slave / worker host_group).

The following variables can be set for each node:

Variable Description
ansible_host The DNS name or IP of the host to connect to.
ansible_user The Linux user with sudo permissions that Ansible will use to connect to the host (doesn't have to be root.
ansible_ssh_pass (Optional) The SSH password to use when connecting to the host (this is the password of the ansible_user). Either this or ansible_ssh_private_key_file should be configured.
ansible_ssh_private_key_file (Optional) Local path to the SSH private key that will be used to login into the host. Either this or ansible_ssh_pass should be configured.
rack (Optional) Rack info for the host. Defaults to /default-rack.

Test the inventory

List the inventory:

ansible -i inventory/static all --list-hosts

Confirm access to hosts in the inventory:

ansible -i inventory/static all -m setup

Set the cluster variables

cluster config file

Modify the file at ~/ansible-hortonworks/playbooks/group_vars/all to set the cluster configuration.

Variable Description
cluster_name The name of the cluster.
ambari_version The Ambari version, in the full, 4-number form, for example: 2.6.2.2.
hdp_version The HDP version, in the full, 4-number form, for example: 2.6.5.0.
hdp_build_number The HDP build number for the HDP version above, which can be found on the Stack Repositories page from docs.hortonworks.com. If left to auto, Ansible will try to get it from the repository build.id file so this variable only needs changing if there is no build.id file in the local repository that is being used.
hdf_version The HDF version, in the full, 4-number form, for example: 3.1.2.0.
hdf_build_number The HDF build number for the HDF version above, which can be found on the Stack Repositories page from docs.hortonworks.com. If left to auto, Ansible will try to get it from the repository build.id file so this variable only needs changing if there is no build.id file in the local repository that is being used.
hdpsearch_version The HDP Search version as shown on the docs repository details.
hdpsearch_build_number The HDP Search build number as shown on the docs repository details. This is usually 100 as the HDP Search build number never changed from 100 and there is no build.id file in the HDP Search repo.
repo_base_url The base URL for the repositories. Change this to the local web server url if using a Local Repository. /HDP/<OS>/2.x/updates/<latest.version> (or /HDF/..) will be appended to this value to set it accordingly if there are additional URL paths.

general configuration

Variable Description
external_dns This controls the type of DNS to be used. If yes it will use whatever DNS is currently set up. If no it will populate the /etc/hosts file with all cluster nodes.
disable_firewall This variable controls the local firewall service (iptables, firewalld, ufw). Sometimes, a local firewall service might run and block inter-node cluster communication. In these circumstances the local firewall service should be disabled as traffic rules should be provided by an external firewall such as Security Groups. Set to yes to disable the existing local firewall service if it blocks the inter-node cluster communication.

java configuration

Variable Description
java Can be set to embedded (default - downloaded by Ambari), openjdk or oraclejdk. If oraclejdk is selected, then the .x64.tar.gz package must be downloaded in advance from Oracle. Same with the JCE package. These files can be copied to all nodes in advanced or only to the Ansible Controller and Ansible will copy them. This behaviour is controlled by the oraclejdk_options.remote_files setting.
oraclejdk_options These options are only relevant if java is set to oraclejdk.
.base_folder This indicates the folder where the Java package should be unpacked to. The default of /usr/java is also used by the Oracle JDK rpm.
.tarball_location The location of the tarball file. This can be the location on the remote systems or on the Ansible controller, depending on the remote_files variable.
.jce_location The location of the JCE package zip file. This can be the location on the remote systems or on the Ansible controller, depending on the remote_files variable.
.remote_files If this variable is set to yes then the tarball and JCE files must already be present on the remote system. If set to no then the files will be copied by Ansible (from the Ansible controller to the remote systems).

database configuration

Variable Description
database The type of database that should be used. A choice between embedded (Ambari default), postgres, mysql or mariadb.
database_options These options are only relevant for the non-embedded database.
.external_hostname The hostname/IP of the database server. This needs to be prepared as per the documentation. No need to load any schema, this will be done by Ansible, but the users and databases must be created in advance. If left empty '' then the playbooks will install the database server on the Ambari node and prepare everything with the settings defined bellow. To change any settings (like the version or repository path) modify the OS specific files under the playbooks/roles/database/vars/ folder.
.add_repo If set to yes, Ansible will add a repo file pointing to the repository where the database packages are located (by default, the repo URL is public). Set this to no to disable this behaviour and use repositories that are already available to the OS.
.ambari_db_name, .ambari_db_username, .ambari_db_password The name of the database that Ambari should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.hive_db_name, .hive_db_username, .hive_db_password The name of the database that Hive should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.oozie_db_name, .oozie_db_username, .oozie_db_password The name of the database that Oozie should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.druid_db_name, .druid_db_username, .druid_db_password The name of the database that Druid should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.superset_db_name, .superset_db_username, .superset_db_password The name of the database that Superset should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.rangeradmin_db_name, .rangeradmin_db_username, .rangeradmin_db_password The name of the database that Ranger Admin should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.rangerkms_db_name, .rangerkms_db_username, .rangerkms_db_password The name of the database that Ranger KMS should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.registry_db_name, .registry_db_username, .registry_db_password The name of the database that Schema Registry should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.
.streamline_db_name, .streamline_db_username, .streamline_db_password The name of the database that SAM should use and the username and password to connect to it. If database_options.external_hostname is defined, these values will be used to connect to the database, otherwise the Ansible playbook will create the database and the user.

kerberos security configuration

Variable Description
security This variable controls the Kerberos security configuration. If set to none, Kerberos will not be enabled. Otherwise the choice is between mit-kdc or active-directory.
security_options These options are only relevant if security is not none. All of the options here are used for an Ambari managed security configuration. No manual option is available at the moment.
.external_hostname The hostname/IP of the Kerberos server. This can be an existing Active Directory or MIT KDC. If left empty '' then the playbooks will install the MIT KDC on the Ambari node and prepare everything.
.realm The realm that will be used when creating service principals.
.admin_principal The Kerberos principal that has the permissions to create new users. No need to append the realm to this value. In case of Active Directory, this user must have Create, delete, and manage user accounts permissions over the OU container. If installing a new MIT KDC this user will be created by the playbook.
.admin_password The password for the above user.
.kdc_master_key The master password for the Kerberos database. Only used when installing a new MIT KDC (when security is mit-kdc and external_hostname is set to ''.
.ldap_url The URL to the Active Directory LDAPS interface. Only used when security is set to active-directory.
.container_dn The distinguished name (DN) of the container that will store the service principals. Only used when security is set to active-directory.
.http_authentication Set to yes to enable Kerberos HTTP authentication (SPNEGO) for most UIs.

ranger configuration

Variable Description
ranger_options These options are only relevant if RANGER_ADMIN is a component of the dynamic Blueprint stack.
.enable_plugins If set to yes the plugins for all of the available services will be enabled. With no Ranger would be installed but not functional.
ranger_security_options Security related options for Ranger (such as passwords).
.ranger_admin_password The password for the Ranger admin users (both admin and amb_ranger_admin).
.ranger_keyadmin_password The password for the Ranger keyadmin user. This only has effect in HDP3, with HDP2 the password will remain to the default of keyadmin and must be changed manually.
.kms_master_key_password The password used for encrypting the Master Key.

other security configuration

Variable Description
ambari_admin_password The Ambari password of the ambari_admin_user user previously set. If the username is admin and this password is different than the default admin, the ambari-config role will change the default password with the one set here.
default_password A default password for all required passwords which are not specified in the blueprint.
atlas_security_options.admin_password The password for the Atlas admin user.
knox_security_options.master_secret The Knox Master Secret as explained in the documentation.
nifi_security_options Security related options for NiFi (such as passwords).
.encrypt_password The value for the nifi.security.encrypt.configuration.password property - used to encrypt raw configuration values as explained in the documentation.
.sensitive_props_key The value for the nifi.sensitive.props.key property - the password used to encrypt any sensitive property values that are configured in processors as explained in the documentation.
superset_security_options Security related options for Superset (such as passwords).
.secret_key The value for the SECRET_KEY property (used to encrypt user passwords).
.admin_password The password for the Superset admin user.
smartsense_security_options.admin_password The password for the Activity Explorer's Zeppelin admin user.
logsearch_security_options.admin_password The password for the Log Search admin user.
accumulo_security_options Security related options for Accumulo (such as passwords).
.root_password Password for the Accumulo root user. This password will be used to initialize Accumulo and to create the trace user.
.instance_secret A secret unique to a given instance that all Accumulo server processes must know in order to communicate with one another.
.trace_user User that the tracer process uses to write tracing data to Accumulo.
.trace_password Password for the trace user.

ambari configuration

Variable Description
ambari_admin_user The Ambari administrator's username, normally admin. This user and the password bellow are used to login to Ambari for API requests.
ambari_admin_default_password The default password for the Ambari admin user. This is normally admin after Ambari is first installed. No need to change this unless there's a change in the Ambari codebase.
config_recommendation_strategy Configuration field which specifies the strategy of applying configuration recommendations to a cluster. Choose between NEVER_APPLY, ONLY_STACK_DEFAULTS_APPLY, ALWAYS_APPLY, ALWAYS_APPLY_DONT_OVERRIDE_CUSTOM_VALUES. For more details about what each value means, check the documentation.
smartsense.id, .account_name, .customer_email Hortonworks subscription details. These can be found in the Hortonworks support portal, under the Tools tab (as explained in the documentation). If a subscription was not purchased, these can be left empty but the bundle would not be uploaded to Hortonworks.
wait / wait_timeout Set this to true if you want the playbook to wait for the cluster to be successfully built after applying the blueprint. The timeout setting controls for how long (in seconds) should it wait for the cluster build.
accept_gpl Set to yes to enable Ambari Server to download and install GPL Licensed packages as explained on the documentation.
cluster_template_file The path to the cluster creation template file that will be used to build the cluster. It can be an absolute path or relative to the ambari-blueprint/templates folder. The default should be sufficient for cloud builds as it uses the cloud_config variables and Jinja2 Template to generate the file.

blueprint configuration

Variable Description
blueprint_name The name of the blueprint as it will be stored in Ambari.
blueprint_file The path to the blueprint file that will be uploaded to Ambari. It can be an absolute path or relative to the roles/ambari-blueprint/templates folder. The blueprint file can also contain Jinja2 Template variables.
blueprint_dynamic Settings for the dynamic blueprint template - only used if blueprint_file is set to blueprint_dynamic.j2. The host_group names must match the names from the inventory setting file ~/ansible-hortonworks/inventory/CLOUD/group_vars/all (this is based on the host_groups Ambari Blueprint concept). The chosen components are split into two lists: clients and services. The chosen Component layout must respect Ambari Blueprint restrictions - for example if a single NAMENODE is configured, there must also be a SECONDARY_NAMENODE component.

Install the cluster

Run the script that will install the cluster using Blueprints while taking care of the necessary prerequisites.

Make sure you set the CLOUD_TO_USE environment variable to static.

export CLOUD_TO_USE=static
cd ~/ansible-hortonworks*/ && bash install_cluster.sh

You may need to load the environment variables if this is a new session:

source ~/ansible/bin/activate

This script will apply all the required playbooks in one run, but you can also apply the individual playbooks by running the following wrapper scripts:

  • Prepare the nodes: prepare_nodes.sh
  • Install Ambari: install_ambari.sh
  • Configure Ambari: configure_ambari.sh
  • Apply Blueprint: apply_blueprint.sh
  • Post Install: post_install.sh