forked from flr/doc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FLBEIA_Testing_Management_Strategies.Rmd
1152 lines (930 loc) · 50.3 KB
/
FLBEIA_Testing_Management_Strategies.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Testing Different Management Strategies in the Management Procedure of FLBEIA"
# author: "Sonia Sanchez-Maroño and FLBEIA team"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
github_document:
mathjax: TRUE
pdf_document:
fig_width: 6
fig_height: 4
toc: yes
tags: [FLBEIA management]
license: Creative Commons Attribution-ShareAlike 4.0 International Public License
bibliography: bibliography.bib
---
```{r, ini, echo=FALSE, results='hide', message=FALSE}
# This chunk set the document environment, so it is hidden
library(knitr)
source("R/ini.R")
knitr::opts_chunk$set(fig.align='center',
message=FALSE, warning=FALSE, echo=TRUE, cache=FALSE)
options(width=50)
set.seed(1423)
```
```{r echo=FALSE, out.width='20%'}
include_graphics('images/FLBEIA_logo.png')
```
# Aim
**FLBEIA** [@garcia2017] provides a battery of tutorials for learning how to use this software.
This is the fourth tutorial of **FLBEIA** and it is a practical guide about how to implement different management measures within **FLBEIA**.
In this tutorial some examples on how to simulate changes in management measures are presented.
Firstly, it is explained how to change the Harvest Control Rule (HCR).
Secondly, how to simulate effort-based management is presented.
Thirdly, an example on how to include of technical measures is included.
And finally, it is described how to simulate spatial and/or temporal closures.
Additionally, some exercises are proposed.
The exact way to define the objects used to set the simulation is described in the **FLBEIA** manual.
This manual can be download from [GitHub](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf),
within the 'doc' folder of the package installation or typing ```help(package = FLBEIA)``` in the R console.
Nevertheless, the objects to set the simulation doesn't need to be defined for the following examples,
as the datasets ```oneIt``` and ```multi``` from the FLBEIA package will be used.
For details on these objects, see [FLBEIA tutorial, Section 5.2](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf)
or type ```?FLBEIA``` in the R console.
To see all the datasets available in the **FLBEIA** package:
```{r, eval=FALSE}
data(package='FLBEIA')
```
# Required packages to run this tutorial
To follow this tutorial you should have installed the following packages:
- CRAN: [ggplot2](https://cran.r-project.org/web/packages/ggplot2/index.html)
- FLR: [FLCore](http://www.flr-project.org/FLCore/), [FLAssess](http://www.flr-project.org/FLAssess/),
[FLash](http://www.flr-project.org/FLash/), [FLBEIA](http://www.flr-project.org/FLBEIA/),
[FLFleet](http://www.flr-project.org/FLFleet/), [ggplotFL](http://www.flr-project.org/ggplotFL/)
If you are using Windows, please use 32-bit R version because some of the packages do not work in 64-bit.
```{r, eval=FALSE}
install.packages( c("ggplot2"))
install.packages( c("FLCore", "FLBEIA", "FLFleets", "FLash", "FLAssess", "FLXSA", "ggplotFL"),
repos="http://flr-project.org/R")
```
Load all necessary packages.
```{r, pkgs, results = "hide"}
# Load all necessary packages.
library(FLBEIA)
library(FLXSA)
library(FLash)
library(ggplotFL)
```
# EXAMPLE 1: changing the Harvest Control Rule
## Description
This example shows how to change the HCR used in the Management Procedure (MP).
In this case, the Operating Model (OM) runs annually and it is formed by a single age-structured stock
and an unique fleet which activity is performed in an unique m?tier. In the Management Procedure (MP),
the fleet dynamics is assumed to be a Simple Mixed Fisheries behaviour (for details, see information on
SMFB function in the [**FLBEIA** manual](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf),
the stock is observed without error, there is not assessment carried out and the ICES HCR [@ices2009]
is used to se the TAC yearly.
All the objects have 3 iterations and uncertainty in the projections comes exclusively from the generation of the new incoming recruitments.
* Operating model:
+ Biological:
+ Population dynamics: ```stk1``` - age structured population growth
+ SR model: ```stk1``` - Beverthon and Holt autoregressive/segmented regression
+ Fleet: ```fl1``` - Simple Mixed Fisheries Behaviour
+ Covariates: no covariates
* Management Procedure:
+ Observation: ```stk1``` - perfect observation
+ Assessment: ```stk1``` - no assessment
+ Management advice: ```stk1``` - ICES harvest control rule
The neccesary ```FLR``` objects to run **FLBEIA** are available in the dataset called ```oneIt```.
```{r echo=TRUE, eval=TRUE}
# Load the dataset
rm(list=ls()) # empty the workspace
data(oneIt) # load the dataset
```
## Exploring the data
Information related to management advice component of the MP is provided in ```oneItAdv``` and ```oneItAdvC``` objects.
```{r echo=TRUE, eval=FALSE}
# Objects with info related to management advice
oneItAdv # info on TAC/TAE and quota share
oneItAdvC # control object related to advice
```
Currently ICES HCR is being used, so we will change it to AnnexIV HCR [@deOliveira2010,
see Annex IV rules 4 and 5 a/b (HCR 2 and 4)].
For this rule, it is required an index in biomass, which is available in the dataset we are using (```oneIt```).
```{r echo=TRUE, eval=TRUE}
# required an index in biomass:
ls()
summary(oneItIndBio[[1]]) # Biomass index
summary(oneItIndBio[['stk1']]$idBio) # or: oneItIndBio$stk1$idBio
summary(oneItObsCIndBio) # Control object related to the biomass index
summary(oneItObsCIndBio$stk1)
oneItObsCIndBio$stk1$indObs
```
Now we need to set the control parameters for this new HCR, for more details on the control parameters
required for the different HCRs available, see the
[**FLBEIA** manual](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf).
In this particular case, we have to indicate the name of the index to be used, the reference points (i.e. alpha and beta) and the type of rule [options: 2 or 4, see HCRs from @deOliveira2010].
```{r echo=TRUE, eval=TRUE}
# set the control parameters for the new HCR
oneItAdvC2 <- oneItAdvC
stk1.advC <- list()
stk1.advC$HCR.model <- 'annexIVHCR' # selected HCR
stk1.advC$index <- 'id2' # biomass index
nit <- dim(oneItFl[[1]]@effort)[6]
stk1.advC$ref.pts <- array( c(0.1,0.2), # reference points (alpha=0.1, beta=0.2)
dim=c(2,nit),
dimnames = list(c('alpha','beta'),dimnames(oneItFl[[1]]@effort)$iter))
stk1.advC$type <- 2
oneItAdvC2$stk1 <- stk1.advC
# There is not assessment and the stock does not need to be obseved
oneItObsCIndBio$stk1$stkObs$stkObs.model <- 'NoObsStock'
# Set in the advice control the name of the index to be used
oneItAdvC2[['stk1']][["index"]] <- name(oneItIndBio$stk1$idBio)
```
## Run FLBEIA
Base Case (bc): using ICES HCR
```{r echo=TRUE, eval=TRUE, results = "hide"}
s1 <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Indices not used.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
```
Altenative case (a4): using AnnexIV HCR
```{r echo=TRUE, eval=TRUE, results = "hide"}
s1a <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = oneItIndBio, # Biomass index.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsCIndBio, # List: type of stock and index observation
# ("NoObsStock","bioInd").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC2) # List: rule for TAC advice ("AnnexIV").
```
See that the differences in the call are the ```advice.ctrl```, ```indices``` and ```obs.ctrl``` objects,
where we say to **FLBEIA** what HCR shoul be applied and wich indices are available and how to generate them
(among other things).
## Results
Setting the reference points:
```{r echo=TRUE, eval=TRUE, results = "hide"}
Blim.stk1 <- 800
Bpa.stk1 <- 1200
```
Summary plots comparing both scenarios:
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - stock summary
s10_bio <- rbind( bioSum(s1),
bioSum(s1a, scenario='a4')) # biological indicators
plotbioSum( s10_bio, Blim=Blim.stk1, Bpa=Bpa.stk1, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - economic summary
s10_flt <- rbind( fltSum(s1),
fltSum(s1a, scenario='a4')) # indicators at fleet level
plotfltSum( s10_flt, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 7, fig.height = 4}
# - risk summary
s1_risk <- riskSum( s1, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0))
s1a_risk <- riskSum( s1a, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0),
scenario='a4')
s10_risk <- rbind( s1_risk, s1a_risk) # risk indicators
p <- ggplot( data=s10_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = oneItMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+
ylab("Risk")
print(p)
```
Note that due to the uncertainty introduced in the recruitment and the very low number of iterations,
you can get very different results from the ones shown in this example.
Therefore when running an MSE the number of iterations should be enough to get stability in the results
(i.e. the quantiles).
# EXAMPLE 2: effort-based management
## Description
This example shows how to carry out MSE simulations based on effort.
Currently, in **FLBEIA** there is not available any specific function to simulate an effort-based management.
For carrying out an adaptative effort-based management an effort-based HCR needs to be defined.
However, there is the possibility to do it by setting a priory the allowed effort for
the projection period (independently from the stock status), instead of calculating it as a function
of the expected quota based on a given a HCR and the stock status.
In this case, we use the same data as in the previous example (i.e. ```oneIt```).
For details on it, see Example 1.
```{r echo=TRUE, eval=TRUE}
data(oneIt) # load the dataset
```
## Exploring the data
Initial assumption on effort, when conditioning the objects using the easy/smart conditioning functions
([**FLBEIA** manual](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf), Chapter 5),
is that the effort in the projection period is the mean effort of a range of years
(determined by the user). Afterwards, when running the simulation, depending on the function selected
to simulate the fleet dynamics this effort is recalculated, except for the case when selecting
```fixedEffort``` (as it is the case here) where these initially set effort values are maintained constant.
Initially, the effort dynamics model selected in the data from ```oneIt``` is SMFB
(Simple Mixed Fisheries Behaviour), so we need to change it to fixed effort and define the effort
values for the projection period as desired.
```{r echo=TRUE, eval=TRUE}
# Fleet dynamics: effort model
oneItFlC$fl1$effort.model
# reset it to fixed effort
oneItFlC$fl1$effort.model <- 'fixedEffort'
```
For this dataset, the effort in the projection period is calculated as the mean of the last 2 years
(i.e. 2008-2009), we will consider this as the base case and an alternative scenarios will
be defined for the effort in the projection period:
* bc : mean of the last 2 years;
* E20 : 20% reduction of the effort relative to last 3 years mean;
Effort values are defined in ```oneItFl```, so we generate a new object with these new values
for each alternative scenario.
```{r echo=TRUE, eval=TRUE}
# Define the FLFleetsExt object for the alternative scenarios
oneItFl2a <- oneItFl
# Store values of simulation and historic years
yrs <- dimnames(oneItFl[[1]]@effort)$year
sim.yrs <- as.character(oneItMainC$sim.years['initial']:oneItMainC$sim.years['final'])
hist.yrs <- yrs[!yrs %in% sim.yrs]
# Change the effort for the simulation years for the alternative scenario:
oneItFl2a[[1]]@effort[,sim.yrs,] <-
0.80 * yearMeans(oneItFl2a[[1]]@effort[,hist.yrs[length(hist.yrs)+(-2:0)],])
```
## Run FLBEIA
Base Case: effort in projection period equal to the mean of last 2 years
```{r echo=TRUE, eval=TRUE, results = "hide"}
s2 <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
```
Altenative case:
* Direct reduction of effort (E20): 20% reduction of the effort relative to the last 3 years mean
```{r echo=TRUE, eval=TRUE, results = "hide"}
s2a <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl2a, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
```
See that the only difference in the call is the ```fleets``` object,
where we say to **FLBEIA** which effort to apply (among other things).
## Results
Setting the reference points:
```{r echo=TRUE, eval=TRUE, results = "hide"}
Blim.stk1 <- 800
Bpa.stk1 <- 1200
```
Summary plots comparing the different scenarios:
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - stock summary
s20_bio <- rbind( bioSum(s2),
bioSum(s2a, scenario='E20')) # biological indicators
plotbioSum( s20_bio, Blim=Blim.stk1, Bpa=Bpa.stk1, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - economic summary
s20_flt <- rbind( fltSum(s2),
fltSum(s2a, scenario='E20')) # indicators at fleet level
plotfltSum( s20_flt, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 7, fig.height = 4}
# - risk summary
s2_risk <- riskSum( s2, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0))
s2a_risk <- riskSum( s2a, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0),
scenario='E20')
s20_risk <- rbind( s2_risk, s2a_risk) # risk indicators
p <- ggplot( data=s20_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = oneItMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+
ylab("Risk")
print(p)
```
# EXAMPLE 3: inclusion of technical measures
## Description
This example shows how to simulate the introduction of technical measures.
In this particular example, changes in the mesh size are simulated. This changes are supposed to
cause changes in the capturabiltiy parameter and in the selectivity (due to possible changes in the
percentage of catches assigned to the discard).
In this case, we use the same data as in the previous examples (i.e. ```oneIt```).
For details on it, see Example 1.
```{r echo=TRUE, eval=TRUE}
data(oneIt) # load the dataset
```
## Exploring the data
Initial assumption on catchability, when conditioning the objects using the easy/smart conditioning
functions (see [FLBEIA tutorial](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf)),
is that the effort in the projection period is the mean
effort of a range of years (determined by the user).
Initial assumption on capturability is reestimated depending o the technical measures to be applied.
Therefore, in the model conditioning we need to set the catchability parameter at age to the
appropriate values.
```{r echo=TRUE, eval=TRUE}
# summary(oneItFl)
names(oneItFl) # only one fleet (fl1)
names(oneItFl[['fl1']]@metiers) # with an unique metier (met1)
names(oneItFl[['fl1']]@metiers[['met1']]@catches) # targeting one stock (stk1)
# oneItFl[['fl1']]@metiers[['met1']]@catches[['stk1']]@catch.q
```
For this dataset, the capturability is set as the mean of the period 2006-2008, we will consider
this as the base case.
An increase of the mesh size that hypothetically would lead to an increase in the age of
recruitment to the fishery from current (1 year) up to 7 years will be simulated.
Having the following alternative scenario:
* Scenario netBig : increase of age at recruiment from the fishery from age 1 to age 7.
Catchability is defined in ```oneItFl```, so we generate a new object with these new values.
```{r echo=TRUE, eval=TRUE}
# Define the FLFleetsExt object for the alternative scenarios
# Check simulation and historic years
yrs <- dimnames(oneItFl[[1]]@effort)$year
sim.yrs <- as.character(oneItMainC$sim.years['initial']:oneItMainC$sim.years['final'])
hist.yrs <- yrs[!yrs %in% sim.yrs]
# Change the catchability for the simulation years:
oneItFl3a <- oneItFl
oneItFl3a[['fl1']]@metiers[['met1']]@catches[['stk1']]@catch.q[1:6,sim.yrs,] <- 0
```
## Run FLBEIA
Base Case: selectivity at age equal to the mean in the 2006-2008 period
```{r echo=TRUE, eval=TRUE, results = "hide"}
s3 <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
```
Altenative case:
* Increase age at rec to the fishery (netBig): selectivity 0 for ages lower than 7
```{r echo=TRUE, eval=TRUE, results = "hide"}
s3a <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl3a, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
```
See that the only difference in the call is the ```fleets``` object, where we say to **FLBEIA** which effort to apply (among other things).
## Results
Setting the reference points:
```{r echo=TRUE, eval=TRUE, results = "hide"}
Blim.stk1 <- 800
Bpa.stk1 <- 1200
```
Summary plots comparing the different scenarios:
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - stock summary
s30_bio <- rbind( bioSum(s3),
bioSum(s3a, scenario='netBig')) # biological indicators
plotbioSum( s30_bio, Blim=Blim.stk1, Bpa=Bpa.stk1, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - economic summary
s30_flt <- rbind( fltSum(s3),
fltSum(s3a, scenario='netBig')) # indicators at fleet level
plotfltSum( s30_flt, proj.yr=oneItMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 7, fig.height = 4}
# - risk summary
s3_risk <- riskSum( s3, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0))
s3a_risk <- riskSum( s3a, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0),
scenario='netBig')
s30_risk <- rbind( s3_risk, s3a_risk) # risk indicators
p <- ggplot( data=s30_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = oneItMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+
ylab("Risk")
print(p)
```
# EXAMPLE 4: spatial and temporal closures
## Description
This example shows how to simulate spatial and temporal closures.
In order to simulate spatial closures, as the model is not spatially explicit, there is the possibility
to define different m?tiers by area and for setting this spatial closure is enough to set the
effort share of this m?tier to 0, redistributing this remaining effort share among the rest of the m?tiers.
To simulate spatial closures, we have two alternatives.
If the temporal resolution of the model fits the period closures, then it is enough to set the effort
of all the fleets to 0 in those seasons in which we want to impose the temporal closure.
However, if the temporal resolution of the model is annual, then the simulation of temporal closures
should be done in the same way as for the spatial closures.
Finally, for the cases for which we do not have information on the m?tiers with enough resolution,
then we can test changes in capturability. For example, when determining a closure for protecting
juveniles, we can assume an associated reduction of the catchability of younger ages
(for all the metiers or just for some or any of them, depending on the expected impact of the
specific measure).
In this case, the Operating Model (OM) runs by quarter and it is formed by two stocks
and two fleets which activity is performed in two metiers in both cases.
In the Management Procedure (MP),
the fleet dynamics is assumed to be of fixed effort and a Simple Mixed Fisheries behaviour,
respectively for each of the fleets
(for details, see information on fixedEffort and SMFB functions in the
[**FLBEIA** manual](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf),
the stocks are observed without error, there is not assessment carried out
and different functions are are used to set the TAC yearly for each stock.
All the objects have 1 iteration and uncertainty in the projections comes exclusively from the generation
of the new incoming recruitments or the annual growth.
* Operating model:
+ Biological:
+ Population dynamics:
+ ```stk1``` - age structured population growth
+ ```stk2``` - biomass dinamics growth
+ SR model: ```stk 1``` - Beverthon and Holt
+ BD model: ```stk 2``` - Pella Tomlinson
+ Fleet:
+ ```fl1``` - fixed effort
+ ```fl2``` - Simple Mixed Fisheries Behaviour
+ Covariates: no covariates +++REVISAR CUANDO ARREGLADO+++
* Management Procedure:
+ Observation: ```stk1```, ```stk2``` - perfect observation
+ Assessment: ```stk1```, ```stk2``` - no assessment
+ Management advice:
+ ```stk1``` - ICES harvest control rule
+ ```stk2``` - TAC set given an Fobj=0.3*Fsq, with F and TAC changing less than 10 and 15%, respectively
The neccesary ```FLR``` objects to run **FLBEIA** are available in the dataset called ```multi```.
```{r echo=TRUE, eval=TRUE}
data(multi) # load the dataset
```
## Exploring the data
For simulating spatial or temporal closures, the fleet effort and/or the effortshare by metier
should be reassigned to the appropriate values.
Initial assumption on catchability, when conditioning the objects using the easy/smart conditioning
functions (see [FLBEIA tutorial](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf)),
is that the effort in the projection period is the mean
effort of a range of years (determined by the user).
Initial assumption on capturability is reestimated depending o the technical measures to be applied.
Therefore, in the model conditioning we need to set the catchability parameter at age to the
appropriate values.
```{r echo=TRUE, eval=TRUE}
# summary(multiFl)
names(multiFl) # two fleets (fl1, fl2)
names(multiFl[['fl1']]@metiers) # fl1: with two metiers (met1, met2)
names(multiFl[['fl1']]@metiers[['met1']]@catches) # fl1_met1: targeting 2 stocks (stk1, stk2)
names(multiFl[['fl1']]@metiers[['met2']]@catches) # fl1_met2: targeting 2 stocks (stk1, stk2)
names(multiFl$fl2@metiers) # fl2: with two metiers (met1, met2)
names(multiFl$fl2@metiers$met1@catches) # fl2_met1: targeting 2 stocks (stk1, stk2)
names(multiFl$fl2@metiers$met2@catches) # fl2_met1: targeting 2 stocks (stk1, stk2)
```
In order to consider the metiers, as area-based (e.g. metiers operating in Northern or Southern area),
we rename them as ```metN``` and ```metS```.
```{r echo=TRUE, eval=TRUE}
names(multiFl$fl1@metiers) <- names(multiFl$fl2@metiers) <- c('metN', 'metS')
```
Having the following alternative scenario:
* Base case - closeNO : no closures.
* Scenario - closeNorth: close the northern area.
* Scenario - closeSson2: ban completely the fishery in the 3rd quarter.
```{r echo=TRUE, eval=TRUE}
# Define the FLFleetsExt object for the alternative scenarios
# Check simulation and historic years
yrs <- dimnames(multiFl[[1]]@effort)$year
sim.yrs <- as.character(multiMainC$sim.years['initial']:multiMainC$sim.years['final'])
hist.yrs <- yrs[!yrs %in% sim.yrs]
# - Northern area closure:
# Change the effort share to 0 for metN and assign this share to the other metiers,
# in this case only metS
multiFl4a <- multiFl
multiFl4a[['fl1']]@metiers[['metS']]@effshare[,sim.yrs,] <-
multiFl4a[['fl1']]@metiers[['metS']]@effshare[,sim.yrs,] +
multiFl4a[['fl1']]@metiers[['metN']]@effshare[,sim.yrs,]
multiFl4a[['fl1']]@metiers[['metN']]@effshare[,sim.yrs,] <- 0
# - Ban completely the fishery in the 3rd quarter:
# Set the fleet effort to 0 in this season for both fleets
multiFl4b <- multiFl
multiFl4b[['fl1']]@effort[,sim.yrs,,3,] <- 0
multiFl4b[['fl2']]@effort[,sim.yrs,,3,] <- 0
```
## Run FLBEIA
Base Case: no closures
```{r echo=TRUE, eval=TRUE, results = "hide"}
s4 <- FLBEIA( biols = multiBio, # FLBiols: FLBiol for stk1 and stk2.
SRs = multiSR, # List: FLSRSim for stk1.
BDs = multiBD, # List: FLBDSim for stk2.
fleets = multiFl, # FLFleets: two fleets (fl1, fl2), with 2 metiers each.
covars = multiCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = multiAdv, # List: 'TAC' and 'quota.share'
main.ctrl = multiMainC, # List: info on start and end of the simulation.
biols.ctrl = multiBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = multiFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = multiCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = multiObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = multiAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = multiAdvC) # List: rule for TAC advice ("IcesHCR").
```
Altenative cases:
* Close the Northern area to the fishery --> not allow the metier fishing in this area (metN)
```{r echo=TRUE, eval=TRUE, results = "hide"}
s4a <- FLBEIA( biols = multiBio, # FLBiols: FLBiol for stk1 and stk2.
SRs = multiSR, # List: FLSRSim for stk1.
BDs = multiBD, # List: FLBDSim for stk2.
fleets = multiFl4a, # FLFleets: two fleets (fl1, fl2), with 2 metiers each.
covars = multiCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = multiAdv, # List: 'TAC' and 'quota.share'
main.ctrl = multiMainC, # List: info on start and end of the simulation.
biols.ctrl = multiBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = multiFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = multiCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = multiObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = multiAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = multiAdvC) # List: rule for TAC advice ("IcesHCR").
```
* Completely ban the fishery in the 3rd quarter.
```{r echo=TRUE, eval=TRUE, results = "hide"}
s4b <- FLBEIA( biols = multiBio, # FLBiols: FLBiol for stk1 and stk2.
SRs = multiSR, # List: FLSRSim for stk1.
BDs = multiBD, # List: FLBDSim for stk2.
fleets = multiFl4b, # FLFleets: two fleets (fl1, fl2), with 2 metiers each.
covars = multiCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = multiAdv, # List: 'TAC' and 'quota.share'
main.ctrl = multiMainC, # List: info on start and end of the simulation.
biols.ctrl = multiBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = multiFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = multiCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = multiObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = multiAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = multiAdvC) # List: rule for TAC advice ("IcesHCR").
```
See that the only difference in the call is the ```fleets``` object, where we alter the values for
effort or effort share by metier.
## Results
Setting the reference points:
```{r echo=TRUE, eval=TRUE, results = "hide"}
Blim.stk1 <- 800
Bpa.stk1 <- 1200
Blim.stk2 <- 50000
Bpa.stk2 <- 65000
```
Summary plots comparing the different scenarios:
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - stock summary
s40_bio <- rbind( bioSum(s4, scenario='closeNO'),
bioSum(s4a, scenario='closeNorth'),
bioSum(s4a, scenario='closeSson2')) # biological indicators
plotbioSum( s40_bio, stk.nam='stk1', Blim=Blim.stk1, Bpa=Bpa.stk1,
proj.yr=multiMainC$sim.years[['initial']])
plotbioSum( s40_bio, stk.nam='stk2', Blim=Blim.stk2, Bpa=Bpa.stk2,
proj.yr=multiMainC$sim.years[['initial']])
```
```{r echo=TRUE, eval=TRUE, fig.width = 8, fig.height = 5}
# - economic summary at metier level
s40_mt <- rbind( mtSum(s4, scenario='closeNO', long = TRUE),
mtSum(s4a, scenario='closeNorth', long = TRUE),
mtSum(s4b, scenario='closeSson2', long = TRUE)) # indicators at fleet level
s40_mt$flmt <- paste( s40_mt$fleet, s40_mt$metier, sep='_')
p <- ggplot( data=s40_mt, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_grid(indicator ~ flmt, scales="free") +
geom_vline(xintercept = multiMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=10),
title=element_text(size=10,face="bold"),
strip.text=element_text(size=10))
print(p)
```
```{r echo=TRUE, eval=TRUE, fig.width = 7, fig.height = 4}
# - risk summary
s4_risk <- riskSum( s4, Bpa = c(stk1=Bpa.stk1,stk2=Bpa.stk2),
Blim = c(stk1=Blim.stk1,stk2=Blim.stk2),
Prflim = c(fl1=0,fl2=0), scenario = 'closeNO')
s4a_risk <- riskSum( s4a, Bpa = c(stk1=Bpa.stk1,stk2=Bpa.stk2),
Blim = c(stk1=Blim.stk1,stk2=Blim.stk2),
Prflim = c(fl1=0,fl2=0), scenario='closeNorth')
s4b_risk <- riskSum( s4b, Bpa = c(stk1=Bpa.stk1,stk2=Bpa.stk2),
Blim = c(stk1=Blim.stk1,stk2=Blim.stk2),
Prflim = c(fl1=0,fl2=0), scenario='closeSson2')
s40_risk <- rbind( s4_risk, s4a_risk, s4b_risk) # risk indicators
p <- ggplot( data=subset(s40_risk,indicator=='pPrflim'), aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_grid(indicator ~ unit, scales="free") +
geom_vline(xintercept = multiMainC$sim.years[['initial']]-1, linetype = "longdash") +
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15)) +
ylab("Risk")
print(p)
p <- ggplot( data=subset(s40_risk,indicator!='pPrflim'), aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_grid(indicator ~ unit, scales="free") +
geom_vline(xintercept = multiMainC$sim.years[['initial']]-1, linetype = "longdash") +
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15)) +
ylab("Risk")
print(p)
```
# Exercises
<!-- TO BE COMPLETED -->
* Exercise 1: Following Example 1, now instead using a HCR to set the TAC,
set a fixed TAC of 300 tons for all the projection period.
* Exercise 2: Similar to what has been done in example Example 2,
set a gradual reduction of the effort to achieve a 50% reduction of the effort in the
last year of the projection period, relative to the last 3 years mean.
* Exercise 3: Simulate a decrease in the mesh size that increases the capturability, but at the
same time increases the discards. For example, leading to a 10% increase of catchability
for the medium ages (4-10) and to discard 50% of the catches at ages 1-2 and 25% at age 3.
<!-- * Exercise 4: -->
## Results of the exercises
```{r echo=TRUE, eval=FALSE}
# EXERCISE 1
##############
# Set the TAC value to 300 tons
# Set the control parameters related to advice to 'fixedAdvice'
oneItAdvC3 <- list()
oneItAdvC3$stk1 <- list()
oneItAdvC3$stk1$HCR.model <- 'fixedAdvice' # selected HCR
# Set the TAC in the projection year to 300 tons
oneItAdv3 <- oneItAdv
proj.yrs <- dimnames(oneItAdv3$TAC)$year[as.numeric(dimnames(oneItAdv3$TAC)$year)>=
oneItMainC$sim.years[['initial']]]
oneItAdv3$TAC[,proj.yrs,] <- 300
## Run FLBEIA
# Fixed advice (fTAC): TAC fixed at 300 tons
s1b <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = oneItInd, # Not indices.
advice = oneItAdv3, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsCInd, # List: type of stock and index observation
# ("NoObsStock","bioInd").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC3) # List: rule for TAC advice ("AnnexIV").
## Results: comparison with previous scenarios
# - stock summary
s10_bio <- rbind( s10_bio,
bioSum(s1b, scenario='fTAC')) # biological indicators
plotbioSum( s10_bio, Blim=Blim.stk1, Bpa=Bpa.stk1, proj.yr=oneItMainC$sim.years[['initial']])
# - economic summary
s10_flt <- rbind( s10_flt,
fltSum(s1b, scenario='fTAC')) # indicators at fleet level
plotfltSum( s10_flt, proj.yr=oneItMainC$sim.years[['initial']])
# - risk summary
s1b_risk <- riskSum( s1b, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0),
scenario='fTAC')
s10_risk <- rbind( s10_risk, s1b_risk) # risk indicators
p <- ggplot( data=s10_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = oneItMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+
ylab("Risk")
print(p)
# EXERCISE 2
##############
# Fleet dynamics: effort model
oneItFlC$fl1$effort.model # fixed effort
# Set the effort values to fit the condition required
# (i.e. gradual reduction to 50% reduction of the effort in the last proj. year)
# - Generate a new FLFleets object
oneItFl2b <- oneItFl
# - Store values of simulation and historic years
yrs <- dimnames(oneItFl[[1]]@effort)$year
sim.yrs <- as.character(oneItMainC$sim.years['initial']:oneItMainC$sim.years['final'])
hist.yrs <- yrs[!yrs %in% sim.yrs]
# - Change the effort for the simulation years:
eff.yred <- 0.5/length(sim.yrs)
i <- 0
for (yr in sim.yrs) {
i <- i + 1
rf <- 1 - eff.yred * i
oneItFl2b[[1]]@effort[,yr,] <- rf * oneItFl2b[[1]]@effort[,hist.yrs[length(hist.yrs)],]
}
# - check if correct
oneItFl2b[[1]]@effort[,sim.yrs[length(sim.yrs)],]/oneItFl2b[[1]]@effort[,hist.yrs[length(hist.yrs)],]
## Run FLBEIA
# Gradual reduction of effort (E50g): gradual reduction for 50% reduction in last proj. yr
# (rel. to last 3yrs mean)
s2b <- FLBEIA( biols = oneItBio, # FLBiols: FLBiol for stk1.
SRs = oneItSR, # List: FLSRSim for stk1.
BDs = NULL, # Not population with biomass dynamics.
fleets = oneItFl2b, # FLFleets: one fleet.
covars = oneItCv, # List: covars related to economy.
indices = NULL, # Not indices.
advice = oneItAdv, # List: 'TAC' and 'quota.share'
main.ctrl = oneItMainC, # List: info on start and end of the simulation.
biols.ctrl = oneItBioC, # List: model to simulate the stock dynamics.
fleets.ctrl = oneItFlC, # List: fleet dyn. models and other parameters.
covars.ctrl = oneItCvC, # List: covariates dynamics ("fixedCovar").
obs.ctrl = oneItObsC, # List: type of stock and index observation
# ("PerfectObs","NoObsIndex").
assess.ctrl = oneItAssC, # List: assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # List: rule for TAC advice ("IcesHCR").
## Results: comparison with previous scenarios
# - stock summary
s20_bio <- rbind( s20_bio,
bioSum(s2b, scenario='E50g')) # biological indicators
plotbioSum( s20_bio, Blim=Blim.stk1, Bpa=Bpa.stk1, proj.yr=oneItMainC$sim.years[['initial']])
# - economic summary
s20_flt <- rbind( s20_flt,
fltSum(s2b, scenario='E50g')) # indicators at fleet level
plotfltSum( s20_flt, proj.yr=oneItMainC$sim.years[['initial']])
# - risk summary
s2b_risk <- riskSum( s2b, Bpa = c(stk1=Bpa.stk1), Blim = c(stk1=Blim.stk1), Prflim = c(fl1 = 0),
scenario='E50g')
s20_risk <- rbind( s20_risk, s2b_risk) # risk indicators
p <- ggplot( data=s20_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = oneItMainC$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+