forked from flr/doc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FLBEIA_Incorporating_SS3assessment_MP.Rmd
846 lines (638 loc) · 31 KB
/
FLBEIA_Incorporating_SS3assessment_MP.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
---
title: "Including SS3 assessment within the Management Procedure of FLBEIA"
# author: "Sonia Sanchez-Maroño and FLBEIA team"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
github_document:
mathjax: TRUE
pdf_document:
fig_width: 6
fig_height: 4
toc: yes
tags: [FLBEIA SS3]
license: Creative Commons Attribution-ShareAlike 4.0 International Public License
bibliography: bibliography.bib
---
```{r, ini, echo=FALSE, results='hide', message=FALSE, warning=FALSE}
# This chunk set the document environment, so it is hidden
library(knitr)
knitr::opts_chunk$set(fig.align="center",
message = FALSE, warning = FALSE, echo = TRUE, cache = FALSE)
options(width=50)
set.seed(1423)
```
```{r echo=FALSE, out.width='20%'}
include_graphics('images/FLBEIA_logo.png')
```
# Aim
**FLBEIA** [@garcia2017] provides a battery of tutorials for learning how to use this software.
This <!-- is the thirth --> tutorial <!-- of **FLBEIA** and it --> is a practical guide about how to
use Stock Synthesis (SS3) [@methot2013] assessment model to assess the stock status
within **FLBEIA** in the Management Procedure (MP).
In this tutorial it is presented an example on how to include SS3 within the MP to assess a stock.
It has to be stated that this is an example for a particular stock and in case of aiming to use it
for other stock this should only serve as a guide, because some of the functions are case specific.
This will be detailed along the tutorial.
# Required packages to run this tutorial
To follow this tutorial you should have installed the following packages:
- FLR:
[FLCore](http://www.flr-project.org/FLCore/) and
[FLFleet](http://www.flr-project.org/FLFleet/).
- Stock Synthesis:
[r4ss](https://cran.r-project.org/web/packages/r4ss/index.html).
- Data manipulation:
[arrayhelpers](https://cran.r-project.org/web/packages/arrayhelpers/index.html),
[reshape2](https://cran.r-project.org/web/packages/reshape2/index.html),
[dplyr](https://cran.r-project.org/web/packages/dplyr/index.html) and
[tidyr](https://cran.r-project.org/web/packages/tidyr/index.html).
```{r, eval=FALSE}
install.packages( c("FLCore", "FLFleet", "FLBEIA"),
repos="http://flr-project.org/R")
install.packages(c("r4ss","reshape2","arrayhelpers","dplyr","tidyr"))
```
It has to be noted that packages `FLCore`, `FLFleet` and `FLBEIA` have to be installed in this exact order,
as alternative orders can cause some problems.
Load all thenecessary packages.
```{r, pkgs, results = "hide"}
library(FLBEIA)
library(r4ss)
library(reshape2)
library(arrayhelpers)
library(tidyr)
library(dplyr)
```
# Loading your data
The first step is to condition the Operating Model and the Management Procedure with all the relevant information.
In this example, we will take most of the objects required to run the MSE from an `.RData` file
and we will exclusively focus on the observation and assessment part.
For this case, the Operating Model (OM) runs annually and it is formed by a single age-structured
stock, the [Iberian sardine](http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2018/2018/pil.27.8c9a.pdf)
(*Sardina pilchardus*, ICES pil.27.8c9a)
and an unique fleet which activity is performed in an unique metier
(i.e. not differing among the different fleets and metiers targeting the stock).
The file is downloaded into a temporary folder, and uncompressed. Simply change the value of `dir` to save the file in another folder.
<!-- ```{r, getfilesLocal, message=FALSE} -->
<!-- dir <- "src" -->
<!-- ``` -->
```{r, getfiles, message=FALSE}
dir <- tempdir()
# download.file("http://www.flr-project.org/doc/src/ibPIL.zip", file.path(dir, "ibPIL.zip"))
# unzip(file.path(dir, "ibPIL.zip"), exdir=dir)
unzip("src/ibPIL.zip", exdir=dir)
```
The FLBEIA input data can now be loaded using `load`:
```{r, loadibPIL}
load(file.path(dir, "ibPIL.RData"))
ls()
```
This data file contains information to condition FLBEIA.
Specifically, it contains all the elements to run FLBEIA, except from `obs.ctrl` and `assess.ctrl`
arguments that will be defined in this tutorial.
The Operating Model (OM) is conditioned with the information from the last stock assessment available
[@wghansa2018]. The population is age-structured (ages 0 to 6+) and exploited by an unique fleet
(composed by one metier) and is moved forward in anual steps.
It is assumed that the fleet fully complies with the catch advice and
this behaviour is obtained using the `SMFB` function
(for details, see information on `SMFB` function in the
[**FLBEIA** manual](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf)).
In the Management Procedure (MP), the stock is observed without error, and the stock is assessed
with SS3, version 3.24f [@methot2012].
The yearly catch advice (the TAC) is obtained using the HCR used by ICES in the MSY framework
for data rich stocks [@ices2009].
The objects used have 1 iteration and uncertainty in the projection comes exclusively from the
generation of the new incoming recruitments.
* Operating model
+ Biological:
+ Population dynamics: `PIL` - age structured population growth
+ SR model: `PIL` - Beverthon and Holt (segmented regression)
+ Fleet: `INT` - Simple Mixed Fisheries Behaviour
+ Covariates: no covariates
* Management Procedure
+ Observation: `PIL` - observation of biological and catch information
+ Assessment: `PIL` - SS3 assessment
+ Management advice: `PIL` - ICES harvest control rule
```{r, checkData, eval=FALSE}
# Projection years
main.ctrl
# Stock: one stock named as PIL with an age-structured population growth
# - recruitment: generated by a Beverton-Holt model fitted to historical data
summary(biols)
biols.ctrl
summary(SRs)
SRs$PIL@model
SRs$PIL@params
SRs$PIL@uncertainty
# Fleet: one unique fleet (INT), with one unique metier (ALL), targeting only sardine (PIL)
# - effort dynamics: simple mixed fisheries bechaviour
# - catch model : Cobb Douglas at age
# - capital model : fixed capital
# - price model : fixed price
summary(fleets)
summary(fleets$INT@metiers)
summary(fleets$INT@metiers$ALL@catches)
fleets.ctrl
# Covariates: no covariates
covars
covars.ctrl
# Advice: TAC given by ICES HCR
summary(advice)
advice.ctrl
# Indices: two indices available
# - AcousticNumberAtAge: numbers at age
# - DEPM : total biomass every 3 years
summary(indices)
indices$AcousticNumberAtAge@index
indices$DEPM@index
```
# SS3 assessment
<!-- For details on the Iberian sardine assessment see Stock annex and WGHANSA 2018 report. -->
The sardine assessment is an age-based assessment assuming a single area, a single fishery, a
yearly season and genders combined. Input data include catch (in biomass), age composition of
the catch, total abundance (in numbers) and age composition from an annual acoustic survey
and spawning stock biomass (SSB) from a triennial DEPM survey.
Considering the current assessment calendar (annual assessment WG in November) in year (y),
the assessment includes fishery data up to year y-1 and acoustic data up to year y.
The reference assessment used was the one from the last assessment year [@wghansa2018].
For more details, see [@wksarmp2019].
* The model estimates population biomass in the beginning of the last assessment year (interim
year). There are data from the acoustic survey but not from the fishery (catch and age composition)
for the interim year. Data used for the interim year are the following: stock weights-at-age,
catch biomass and catch weights-at-age are equal to those assumed for short-term predictions.
* The fishery age composition in the interim year is assumed to be equal to that in the previous year.
The fishery age composition is included in the calculation of expected values but excluded from
the objective function. Recruitment in the interim year is derived from the stock-recruitment
relationship.
* The model estimates spawning stock biomass (SSB) and adult biomass (B1+, biomass of age
1 and older) at the beginning of the year. The reference age range for output fishing mortality is
2\-5.
For more details on the Iberian sardine stock assessment see the
[ICES Stock Annex](http://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2017/pil.27.8c9a_SA.pdf).
To include the SS3 stock assessment model within the MSE simulations running in FLBEIA,
we need to create an specifice function that mimics the stock asssessment.
This function will update values for every assessment cycle.
Such function is not available in the FLBEIA library, as it should be case-specific.
Therefore, the function presented here is an example and it should be readapted if it wants to
be used for another stock.
We will name the function as `ss32flbeia`.
As inputs, the function needs the ‘observed’ stock and indices objects (surveys)
as well as a folder with the reference assessment in SS3
(in this case is exactly the one used to condition the operating model for MSE).
This folder is available in the ibPIL.zip file, so it has been already uncompressed in the
`temp` folder (see "./ss3R"). Firstly, you need to choose the appropiate ss3 executable and
call it SS3.exe (in the assess_ref folder there are three different options:
ss3_win.exe, ss3_linux.exe, ss3_ios.exe).
Within the FLBEIA MSE process, for each projection year, the `ss32flbeia` function works as follows:
* Copies the reference assessment folder (containing all files needed to run ss3)
* Reads the `ss3.dat`, `wtatage` and `.ctl` files
* Sets $10^{-5}$ value for very low observed catches (i.e. when `stock@catch` $<10^{-5}$)
* Reads the catch and the indices values from the FLR objects
* Eliminates catch at age for years where catch is very low ($<10^{-4}$)
* Creates new `.dat`, `wtatage` and `.ctl` files based on the reference `.dat`, `wtatage` and `.ctl` files
with new catch and indices values from FLR objects
* Runs `ss3.exe` executable
* Reads ss3 output files using the `r4ss` package
* Updates `stock@harvest` and `[email protected]` slots with SS3 output
* Saves convergence indicator, recruitment, fbar, SSB, catchabilities and selectivities from SS3
runs in the covars component of the OM.
* Deletes the copied folder after running each realization.
Therefore we translate this into R code:
```{r echo=TRUE, eval=TRUE}
#########################################################
#### Function to read from FLstock object,
#### create SS3 files (from existing reference ones),
#### run ss3 assessment with new data, and
#### update FLR stock object with estimates from SS3.
#########################################################
########################################################
### Leire Citores september-october 2018 ###############
########################################################
ss32flbeia <- function(stock,indices,control,covars=covars){
# save iteration number
runi <- control$run_it
# last year of the new stock object
lasty <- range(stock)["maxyear"]
# To avoid problems in SS3:
# if catch < 10^-5 --> small value to total catch,
# remove catch at age (done some lines later),
# and put the wt from year before.
stock@catch <- computeCatch(stock)
stock@catch[,which(stock@catch<10^-5)] <- 10^-5
# print
cat("catches in it", runi, range(stock)["maxyear"], "\n",
stock@catch[,ac(range(stock)["maxyear"])], "\n")
# ref_name: reference ss3 assessment folder name
ref_name <- control$ref_name
# directory where the folder with the reference ss3 assessment is located
assess_dir <- control$assess_dir
# get current working directory
dir0 <- getwd()
# set the new working directory
setwd(assess_dir)
# create a new folder where the new assessment will be run
dir <- paste0("assess_temp", runi, lasty)
dir.create(dir)
# copy the reference assessment folder into the new folder
file.copy(ref_name, dir, recursive = TRUE)
# set the working directory inside this folder
# (at the end of the assessment this new folder will be deleted,
# but the reference assessment is always kept)
temp_dir <- paste0(dir,paste0("/",ref_name))
setwd(temp_dir)
################################################################
#### read data from new FLR objects and write to SS3 files
#################################################################
# last year of the new stock object
lasty <- range(stock)["maxyear"]
# read reference assessment data file
datss <- SS_readdat("sardine.dat", verbose= FALSE, version = 3.24)
##control file
ctl <- readLines("sardine.ctl")
# natural mortality vector
ctl[27] <- paste(m(stock)[,1],collapse=" ")
# - update the year in the control file (from reference assessment year to actual year)
ctl_new <- gsub(pattern = ac(datss$endyr), replace = ac(lasty), x = ctl)
# - update the year recruitmen devs (assessment year-1)
ctl_new <- gsub(pattern = ac(datss$endyr-1), replace = ac(lasty-1), x = ctl_new)
# - write the new control file, it overwrites the old one
writeLines(ctl_new, con="sardine.ctl")
# total catch
catch <- melt(catch(stock)[,])[,c("value","year")]
catch$seas <- 1
colnames(catch) <- colnames(datss$catch)
datss$catch <- catch
# age structured catch and index
catchn <- dcast(na.omit(melt(catch.n(stock)[,])[,c("value","year","age")]),year~age)
catchn <- cbind(catchn[,1],subset(datss$agecomp,FltSvy==1)[1,2:9],catchn[,-1])
lastrow <- dim(catchn)[1]
# no catch at age for the last year available (--> delete this value)
catchn <- catchn[-lastrow,]
# remove catch at age when catch<10^-4
catch0years <- which(catchn[,ac(4)]<10^-4)
if(length(catch0years)>0)
catchn <- catchn[-catch0years,]
# set manullay sample size for catch.n for years > 1990
# sample size = 50 for year <= 1990
# sample size = 75 for year > 1990
# (see Iberian sardine Stock Annex for details)
catchn[,"Nsamp"][catchn[,1]>1990] <- 75
indexn <- dcast(na.omit(melt(indices[[1]]@index[,])[,c("value","year","age")]),year~age)
indexn <- cbind(indexn[,1],subset(datss$agecomp,FltSvy==2)[1,2:9],indexn[,-1])
colnames(indexn) <- colnames(catchn)<-colnames(datss$agecomp)
agecomp <- rbind(catchn,indexn)
datss$agecomp <- agecomp
# biomass indices
index2 <- cbind(indexn[,1],rowSums(indexn[,c(10:16)]))
se_log2 <- subset(datss$CPUE,index==2)$se_log
index2 <- cbind(year=index2[,1],seas=1,index=2,obs=index2[,2],se_log=mean(se_log2))
index3 <- na.omit(melt(indices[[2]]@index[,])[,c("value","year")])
se_log3 <- subset(datss$CPUE,index==3)$se_log[1]
index3 <- cbind(year=index3$year,seas=1,index=3,obs=index3$value,se_log=se_log3)
datss$CPUE <- as.data.frame(rbind(index2,index3))
################################################################################
#number of lines
datss$styr <- min(catch$year)
datss$endyr <- an(lasty)
datss$N_catch <- dim(datss$catch)[1]
datss$N_cpue <- dim(datss$CPUE)[1]
datss$N_agecomp <- dim(datss$agecomp)[1]
#write the new data file, it overwrites the old one
SS_writedat(datss,"sardine.dat", overwrite = TRUE, verbose = FALSE, version = "3.24")
##wtatage file
#stock weight (fleet=0)
stockwt <- t(stock.wt(stock)[,,drop=TRUE])
stockwt <- cbind(rownames(stockwt),1,1,1,1,0,stockwt)
stockwt <- apply(stockwt,1,function(x){paste(x,collapse="\t")})
names(stockwt) <- NULL
# weigth for age structured acoustic index (fleet=2) (same as stock weight)
index2wt <- t(stock.wt(stock)[,,drop=TRUE])
index2wt <- cbind(rownames(index2wt),1,1,1,1,2,index2wt)
index2wt <- apply(index2wt,1,function(x){paste(x,collapse="\t")})
names(index2wt) <- NULL
# catch weight (fleet 1 and -1)
catchwt <- t(catch.wt(stock)[,,drop=TRUE])
catchwt <- cbind(rownames(catchwt),1,1,1,1,1,catchwt)
catchwt <- apply(catchwt,1,function(x){paste(x,collapse="\t")})
names(catchwt) <- NULL
catchwt_1 <- t(catch.wt(stock)[,,drop=TRUE])
catchwt_1 <- cbind(rownames(catchwt_1),1,1,1,1,-1,catchwt_1)
catchwt_1 <- apply(catchwt_1,1,function(x){paste(x,collapse="\t")})
names(catchwt_1) <- NULL
# maturity (fleet=-2)
mat <- t((mat(stock)*stock.wt(stock))[,,drop=TRUE])
mat <- cbind(rownames(mat),1,1,1,1,-2,mat)
mat <- apply(mat,1,function(x){paste(x,collapse="\t")})
names(mat) <- NULL
# read the reference weight file
wta <- readLines("wtatage.ss")[1:7]
# generate the new weigth matrix with the data from FLR objects
wta_new <- c(wta,stockwt,catchwt,mat,catchwt_1,index2wt)
# update number of lines
wta_new[1] <- ac(length(wta_new)-length(wta))
# write the new weight file, it overwrtites the old one
writeLines(wta_new, con="wtatage.ss")
################################################################
## execute SS3
## (be careful to use the adecuate executable depending on the
## operating system -windows, linux or ios-)
################################################################
system('./SS3.exe')
#####################################################
### S3 output back to FLR. Just harvest and stock:
#####################################################
dir.assess <- paste0(getwd(),"")
assess <- SS_output(dir = dir.assess, forecast = FALSE, printstats = FALSE, verbose = FALSE)
maxyear <- assess$endyr
ages <- assess$agebins
years <- assess$startyr:assess$endyr
#------------------------------------
# extract assessment outputs:
# F-AT-AGE, REFERENCE F
#
# we need to calculate F-at-age from apical F
# (i.e. F on the fully selected age) and
# selectivity at age
#------------------------------------
selectivity <- subset(assess$ageselex, Fleet==1 & Factor=="Asel2" & Yr %in% years,
select=c("Yr", ac(ages)))
idx <- grep("F_", assess$derived_quants$Label)
f.apical <- data.frame(f=assess$derived_quants[idx,"Value"])
f.apical$Yr <- years
f.apsel <- merge(f.apical, selectivity, all.x = TRUE, by="Yr")
f <- f.apsel$f * f.apsel[,ac(ages)]
harvest <- FLQuant(unname(as.matrix(t(f))),quant="age",units="f",
dimnames=list(age=ac(ages), year=ac(years)))
#------------------------------------
# extract assessment outputs:
# NUMBERS-AT-AGE
#------------------------------------
natage <- subset(assess$natage, Era=="TIME" & `Beg/Mid`=="B" , select=ac(ages))
stock.n <- FLQuant(unname(as.matrix(t(natage))), quant='age', units='NA',
dimnames=list(age=ac(ages), year=ac(years)))
# update stock object
harvest(stock) <- harvest
stock.n(stock) <- stock.n
stock(stock) <- computeStock(stock)
# fill covars to see retros
covars$ssb[ac(lasty),ac(years)] <- ssb(stock)[,]
covars$rec[ac(lasty),ac(years)] <- rec(stock)[,]
covars$fbar[ac(lasty),ac(years)] <- fbar(stock)[,]
params <- assess$parameters
q2 <- exp(subset(params,Label=="LnQ_base_2_Acoustic_survey")[,"Value"])
q3 <- exp(subset(params,Label=="LnQ_base_3_DEPM_survey")[,"Value"])
covars$qs[1,ac(lasty)] <- q2
covars$qs[2,ac(lasty)] <- q3
# Three selectivity periods - breakpoints at 1986 & 2004
# (see Iberian sardine Stock Annex for details)
covars$sel[,ac(lasty),3,,,] <- as.numeric(subset(selectivity,Yr==lasty)[1,-1])
covars$sel[,ac(lasty),2,,,] <- as.numeric(subset(selectivity,Yr==2004)[1,-1])
covars$sel[,ac(lasty),1,,,] <- as.numeric(subset(selectivity,Yr==1986)[1,-1])
# CONVERGENCE
covars$conv[,ac(lasty)] <- assess$maximum_gradient_component
#######################
### delete files
#######################
setwd(assess_dir)
unlink(paste0(assess_dir,dir),recursive=TRUE)
#return to the original working directory
setwd(dir0)
return(list(stock = stock,covars=covars))
}
```
```{r echo=FALSE, eval=TRUE}
list2env(list(ss32flbeia = ss32flbeia), globalenv())
```
Now we need to define the `assess.ctrl` object to call to this new defined function, and
we will additionally set some extra control arguments required by this function:
* `ref_name` : the directory where the assessment files for each new year will be stored;
* `assess_dir`: the directory where the assessment files are stored
(in this case the full path must be provided); and
* `run_it` : an identifier for the scenario and iteration to avoid overwriting the files when
running different iterations and scenarios at the same time
(it is optional, but highly recommended when working with several runs at the same time in a computer).
For this stock, as it occurs for many small pelagics, the stock is observed and assessed up to
the assessment year. This should be indicated in the control object also.
```{r, setAssCtrl}
assess.ctrl <- list( PIL = list())
# Assessment model
assess.ctrl$PIL$assess.model <- "ss32flbeia"
# Does the assessment model work with iterations?
assess.ctrl$PIL$work_w_Iter <- FALSE
# Units for fishing mortality: f or hr
assess.ctrl$PIL$harvest.units <- "f"
# Assesment control arguments
sc <- "s0"; it <- 1
assess.ctrl$PIL$control <- list( ref_name = "assess_ref",
assess_dir = file.path(dir,"ss3R/"),
run_it = paste(it,"_sc",sc,sep=""))
# Assess output also for assessment year
assess.ctrl$PIL$ass.curryr <- TRUE
```
We will also initialize the covars object to store there some information on the assessment outputs,
in order to be able to track the assessment performance all along the projection period.
```{r, setCovars}
ages <- dimnames(biols[[1]]@n)$age
yrs <- dimnames(biols[[1]]@n)$year
proj.yrs <- ac(main.ctrl$sim.years[1]:main.ctrl$sim.years[2])
assini.yr <- ac(main.ctrl$sim.years[1]-1)
# Assessment estimates:
covars$ssb <- covars$fbar <- covars$rec <-
FLQuant(NA, dimnames=list(assess.year=c(assini.yr,proj.yrs), year=yrs))
# - ssb
covars$ssb[assini.yr,] <- ssb(biols$PIL)[,]
# - recruitment
covars$rec[assini.yr,] <- (biols$PIL@n)[1,]
# - survey catchabilities
covars$qs <- FLQuant(NA, dimnames = list(qs=c("acoustic","depm"), year=yrs))
# - selectivity at age
covars$sel <- FLQuant(NA, dimnames = list(age=ages, year=yrs,unit=1:3))
# Assessment convergence
covars$conv <- FLQuant(NA, dimnames = list(conv="conv",year=yrs))
```
# Observation model
For this assessment we need to observe the biological and catch information.
Therefore, we need to use `age2ageDat` function (for details in observation functions see tutorial on
[Using different Assessment models in the Management Procedure of FLBEIA](http://www.flr-project.org/doc/Using_Assessment_models_in_the_MP_FLBEIA.html)).
Additionally, we also need to observe the two indices available for the stock:
a yearly index in numbers at age (named AcousticNumberAtAge) and
a 3-yearly biomass index (named DEPM).
For creating the `obs.ctrl` object we will use the specific creator function (`create.obs.ctrl`).
As default, if not provided as an input, it considers no observation errors (i.e. values equal to 1).
For details on how to set observation errors to alternative values see tutorial on
[Using different Assessment models in the Management Procedure of FLBEIA](http://www.flr-project.org/doc/Using_Assessment_models_in_the_MP_FLBEIA.html)).
```{r, helpObsCtrl, eval=FALSE}
?create.obs.ctrl
```
```{r, flqPIL}
flq.PIL <- FLQuant(dimnames = dimnames(biols$PIL@n))
```
```{r echo=FALSE, eval=TRUE}
list2env(list(flq.PIL = flq.PIL), globalenv())
```
```{r, setObsCtrl}
obs.ctrl <- create.obs.ctrl( stksnames = "PIL", n.stks.inds = 2,
stks.indsnames = names(indices$PIL),
stkObs.models = "age2ageDat",
indObs.models = c("ageInd", "bioInd"),
flq.PIL = flq.PIL)
# Required observation also for assessment year
obs.ctrl$PIL$obs.curryr <- TRUE
```
# Run FLBEIA
```{r, runFLBEIA}
s0 <- FLBEIA( biols = biols, SRs = SRs, BDs = NULL, fleets = fleets,
covars = covars, indices = indices, advice = advice,
main.ctrl = main.ctrl, biols.ctrl = biols.ctrl, fleets.ctrl = fleets.ctrl,
covars.ctrl = covars.ctrl, obs.ctrl = obs.ctrl,
assess.ctrl = assess.ctrl, advice.ctrl = advice.ctrl)
```
# FLBEIA output
```{r, sumPlot}
# - stock summary
s0_bio <- bioSum(s0, scenario="hcrICES_assSS3")
plotbioSum( s0_bio, Blim=PIL_ref.pts[["Blim"]], Bpa=PIL_ref.pts[["Bpa"]],
proj.yr=main.ctrl$sim.years[["initial"]])
# - fleet summary
s0$fleets <- setUnitsNA(s0$fleets)
s0_flt <- fltSum(s0, scenario="hcrICES_assSS3")
plotfltSum( s0_flt, proj.yr=main.ctrl$sim.years[["initial"]])
# - risk summary
s0_risk <- riskSum( s0, Bpa = c(PIL=PIL_ref.pts[["Bpa"]]), Blim = c(PIL=PIL_ref.pts[["Blim"]]),
Prflim = c(INT = NA),
scenario="hcrICES_assSS3")
ggplot( data=s0_risk, aes(x=year, y=value, color=scenario)) +
geom_line() +
facet_wrap(~indicator, scales="free") +
facet_grid(indicator ~ .) +
geom_vline(xintercept = main.ctrl$sim.years[["initial"]]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15))+
ylab("Risk")
```
We can also compare the last assessed stock (MP) with the real one (OM).
In principle, in FLBEIA, the assessment results are only saved for the last assessed year.
However, in this case we have kept track of the assessment results (ssb, rec and fbar)
in every projection year (see next section for more details).
## Assessment fit - convergence issues
To check if the assessment fitting has converged, we have stored convergence values in the
covars object.
```{r, checkConv}
# Number of years in which assessment did not converged
sum(s0$covars$conv>0.001,na.rm=TRUE)
# In case there are, let's see which one(s):
dimnames(s0$covars$conv)$year[!is.na(s0$covars$conv) & s0$covars$conv>0.01]
```
In case that we have lack of convergence in any of the projection years, then the projections should be repeated
until we get an output where all the assessments converged.
We can also check the assessment consistency between years (e.g. checking if there are
retrospective pattens).
```{r, assOupts}
# Management Procedure - perceived
stk.MP <- s0$covars[c("rec", "fbar", "ssb", "qs")]
nyr <- dim(stk.MP$ssb)[1]
stk.MP <- lapply( stk.MP, function(x) x[-nyr,])
# Operating Model - "real"
stk.OM <- list()
stk.OM$ssb <- ssb(s0$biols$PIL)
stk.OM$rec <- s0$biols$PIL@n[1,]
#! +++ CREO QUE HAY UN LAG DE UN ANNO EN LO QUE GUARDADMOS!!!! +++
#! --> COMPROBAR
stk.OM$indices <- stk.MP$qs*NA
stk.OM$indices[1,] <- quantSums(s0$indices$PIL$AcousticNumberAtAge@index)
stk.OM$indices[2,] <- s0$indices$PIL$DEPM@index
```
```{r, assRetros}
dat <- stk.MP[c("ssb", "fbar", "rec")]
dat <- do.call("rbind", lapply(seq_along(dat), function(i,x) {
cbind(as.data.frame(x[[i]]),indicator=names(x)[i])
}, x=dat))
ggplot( dat, aes( year, data, col = factor(assess.year), fill = factor(assess.year)))+
facet_wrap(~indicator, scales = "free", ncol = 2) +
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.1,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1) +
ggtitle("retros")
```
```{r, assPerf}
dat <- as.data.frame(sweep( stk.MP$ssb, 2, stk.OM$ssb, "/"))
ggplot(dat,aes(year,data))+facet_wrap(~assess.year)+
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.2,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1)+
geom_hline(yintercept = 1)+geom_vline(xintercept = main.ctrl$sim.years[["initial"]]-1)+
ggtitle("")+ylim(0.7,1.3)+ylab("estim ssb/real ssb")
dat <- as.data.frame(sweep( stk.MP$rec, 2, stk.OM$rec, "/"))
ggplot(dat,aes(year,data))+facet_wrap(~assess.year)+
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.2,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1)+
geom_hline(yintercept = 1)+geom_vline(xintercept = main.ctrl$sim.years[["initial"]]-1)+
ggtitle("")+ylim(0.7,1.3)+ylab("estim rec/real rec")
dat <- as.data.frame(stk.MP$qs)
ggplot(dat,aes(year,data,col=factor(qs),fill=factor(qs)))+#facet_wrap(~assess.year)+
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.1,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1)+
geom_hline(yintercept = 1)+geom_vline(xintercept = main.ctrl$sim.years[["initial"]]-1)+
ggtitle("")+ylab("qs")
dat <- as.data.frame(stk.OM$indices)
ggplot(dat,aes(year,data,col=factor(qs),fill=factor(qs)))+facet_wrap(~qs,scales="free")+
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.1,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1)+
geom_hline(yintercept = 1)+geom_vline(xintercept = main.ctrl$sim.years[["initial"]]-1)+
ggtitle("")+ylab("generated indices")
dat <- as.data.frame(s0$covars$sel)
ggplot(dat,aes(age,data,col=factor(year),fill=factor(year)))+facet_wrap(~unit)+
stat_summary(fun.y = median,
fun.ymin = function(x) quantile(x,0.05),
fun.ymax = function(x) quantile(x,0.95),
geom = "ribbon",alpha=0.1,col=NA) +
stat_summary(fun.y = median,
geom = "line",size=1)+
ggtitle("")+ylab("selectivities by block")
```
# More information
* You can submit bug reports, questions or suggestions on this tutorial at <https://github.com/flr/doc/issues>.
* Or send a pull request to <https://github.com/flr/doc/>
* For more information on the FLR Project for Quantitative Fisheries Science in R, visit the FLR webpage, <http://flr-project.org>.
* You can submit bug reports, questions or suggestions specific to **FLBEIA** to <[email protected]>.
## Software Versions
* `r version$version.string`
* FLCore: `r packageVersion('FLCore')`
* FLBEIA: `r packageVersion('FLBEIA')`
* FLFleet: `r packageVersion('FLFleet')`
* FLash: `r packageVersion('FLash')`
* FLAssess: `r packageVersion('FLAssess')`
* ggplotFL: `r packageVersion('ggplotFL')`
* ggplot2: `r packageVersion('ggplot2')`
* r4ss: `r packageVersion('r4ss')`
* reshape2: `r packageVersion('reshape2')`
* **Compiled**: `r date()`
## License
This document is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-sa/4.0) license.
## Author information
**Leire Citores**. AZTI, Marine Research Unit. Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Basque Country, Spain. https://www.azti.es/.
**Sonia Sanchez-Maroño**. AZTI, Marine Research Unit. Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain. https://www.azti.es/.
**FLBEIA team**. AZTI. Marine Reserach Unit. Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Basque Country, Spain.
http://flbeia.azti.es/. **Mail** [email protected]
# References