diff --git a/docs/notebooks/00_loading_and_fetching.ipynb b/docs/notebooks/00_loading_and_fetching.ipynb index 3a4f456..f0809db 100644 --- a/docs/notebooks/00_loading_and_fetching.ipynb +++ b/docs/notebooks/00_loading_and_fetching.ipynb @@ -6,8 +6,25 @@ "source": [ "# Fetching and Loading Data\n", "\n", - "This is a short tutorial showing how to fetch and load data in context.\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srlearn/relational-datasets/blob/main/docs/notebooks/00_loading_and_fetching.ipynb)\n", + "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/srlearn/relational-datasets/HEAD?filepath=docs%2Fnotebooks%2F00_loading_and_fetching.ipynb)\n", "\n", + "This is a short tutorial showing how to fetch and load data in context." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install relational-datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ "## `fetch()`\n", "\n", "`fetch()` always returns the path to a specific version of a dataset.\n", @@ -96,7 +113,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.7.9" } }, "nbformat": 4, diff --git a/docs/notebooks/01_converting_propositional_datasets.ipynb b/docs/notebooks/01_converting_propositional_datasets.ipynb index b6468b5..f807c3c 100644 --- a/docs/notebooks/01_converting_propositional_datasets.ipynb +++ b/docs/notebooks/01_converting_propositional_datasets.ipynb @@ -6,6 +6,9 @@ "source": [ "# Converting machine learning benchmark datasets\n", "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srlearn/relational-datasets/blob/main/docs/notebooks/01_converting_propositional_datasets.ipynb)\n", + "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/srlearn/relational-datasets/HEAD?filepath=docs%2Fnotebooks%2F01_converting_propositional_datasets.ipynb)\n", + "\n", "[Alexander L. Hayes](https://hayesall.com): *Ph.D. Student, Indiana University*.\n", "\n", "**Abstract**: Most benchmark machine learning datasets have a *vector-based representation*, where we have a single type of object (people, images, houses) and we learn an *attribute* of those objects (disease risk, cat/dog, median price). This tutorial bridges the gap between vector-based machine learning and relational machine learning, and shows how to view the former in terms of the latter.\n", @@ -13,6 +16,15 @@ "Examples in this notebook are provided as documentation, and are available under the terms of the Apache 2.0 License." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install numpy relational-datasets" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -389,6 +401,15 @@ "Here we: (**1**) load the data and class labels, (**2**) split into training and test sets, (**3**) bin the continuous features to discrete, and (**4**) convert to the relational format." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install scikit-learn" + ] + }, { "cell_type": "code", "execution_count": 16, @@ -678,7 +699,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.7.9" } }, "nbformat": 4,