forked from batra-mlp-lab/visdial-rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
167 lines (141 loc) · 5.15 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import gc
import random
import pprint
from six.moves import range
from markdown2 import markdown
from time import gmtime, strftime
from timeit import default_timer as timer
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import options
from dataloader import VisDialDataset
from torch.utils.data import DataLoader
from eval_utils.dialog_generate import dialogDump
from eval_utils.rank_answerer import rankABot
from eval_utils.rank_questioner import rankQBot, rankQABots
from utils import utilities as utils
from utils.visualize import VisdomVisualize
# read the command line options
params = options.readCommandLine()
# seed rng for reproducibility
manualSeed = 1234
random.seed(manualSeed)
torch.manual_seed(manualSeed)
if params['useGPU']:
torch.cuda.manual_seed_all(manualSeed)
# setup dataloader
dlparams = params.copy()
dlparams['useIm'] = True
dlparams['useHistory'] = True
dlparams['numRounds'] = 10
splits = ['val', 'test']
dataset = VisDialDataset(dlparams, splits)
# Transferring dataset parameters
transfer = ['vocabSize', 'numOptions', 'numRounds']
for key in transfer:
if hasattr(dataset, key):
params[key] = getattr(dataset, key)
if 'numRounds' not in params:
params['numRounds'] = 10
# Always load checkpoint parameters with continue flag
params['continue'] = True
excludeParams = ['batchSize', 'visdomEnv', 'startFrom', 'qstartFrom', 'trainMode', \
'evalModeList', 'inputImg', 'inputQues', 'inputJson', 'evalTitle', 'beamSize', \
'enableVisdom', 'visdomServer', 'visdomServerPort']
aBot = None
qBot = None
# load aBot
if params['startFrom']:
aBot, loadedParams, _ = utils.loadModel(params, 'abot', overwrite=True)
assert aBot.encoder.vocabSize == dataset.vocabSize, "Vocab size mismatch!"
for key in loadedParams:
params[key] = loadedParams[key]
aBot.eval()
# Retaining certain dataloder parameters
for key in excludeParams:
params[key] = dlparams[key]
# load qBot
if params['qstartFrom']:
qBot, loadedParams, _ = utils.loadModel(params, 'qbot', overwrite=True)
assert qBot.encoder.vocabSize == params[
'vocabSize'], "Vocab size mismatch!"
for key in loadedParams:
params[key] = loadedParams[key]
qBot.eval()
# Retaining certain dataloder parameters
for key in excludeParams:
params[key] = dlparams[key]
# Plotting on vizdom
viz = VisdomVisualize(
enable=bool(params['enableVisdom']),
env_name=params['visdomEnv'],
server=params['visdomServer'],
port=params['visdomServerPort'])
pprint.pprint(params)
viz.addText(pprint.pformat(params, indent=4))
print("Running evaluation!")
numRounds = params['numRounds']
if 'ckpt_iterid' in params:
iterId = params['ckpt_iterid'] + 1
else:
iterId = -1
if 'test' in splits:
split = 'test'
splitName = 'test - {}'.format(params['evalTitle'])
else:
split = 'val'
splitName = 'full Val - {}'.format(params['evalTitle'])
print("Using split %s" % split)
dataset.split = split
# if params['evalModeList'] == 'ABotRank':
if 'ABotRank' in params['evalModeList']:
print("Performing ABotRank evaluation")
rankMetrics = rankABot(
aBot, dataset, split, scoringFunction=utils.maskedNll)
for metric, value in rankMetrics.items():
plotName = splitName + ' - ABot Rank'
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
# if params['evalModeList'] == 'QBotRank':
if 'QBotRank' in params['evalModeList']:
print("Performing QBotRank evaluation")
rankMetrics, roundRanks = rankQBot(qBot, dataset, split, verbose=1)
for metric, value in rankMetrics.items():
plotName = splitName + ' - QBot Rank'
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
for r in range(numRounds + 1):
for metric, value in roundRanks[r].items():
plotName = '[Iter %d] %s - QABots Rank Roundwise' % \
(iterId, splitName)
viz.linePlot(r, value, plotName, metric, xlabel='Round')
# if params['evalModeList'] == 'QABotsRank':
if 'QABotsRank' in params['evalModeList']:
print("Performing QABotsRank evaluation")
outputPredFile = "data/visdial/visdial/output_predictions_rollout.h5"
rankMetrics, roundRanks = rankQABots(
qBot, aBot, dataset, split, beamSize=params['beamSize'])
for metric, value in rankMetrics.items():
plotName = splitName + ' - QABots Rank'
viz.linePlot(iterId, value, plotName, metric, xlabel='Iterations')
for r in range(numRounds + 1):
for metric, value in roundRanks[r].items():
plotName = '[Iter %d] %s - QBot All Metrics vs Round'%\
(iterId, splitName)
viz.linePlot(r, value, plotName, metric, xlabel='Round')
if 'dialog' in params['evalModeList']:
print("Performing dialog generation...")
split = 'test'
outputFolder = "dialog_output/results"
os.makedirs(outputFolder, exist_ok=True)
outputPath = os.path.join(outputFolder, "results.json")
dialogDump(
params,
dataset,
split,
aBot=aBot,
qBot=qBot,
beamSize=params['beamSize'],
savePath=outputPath)
viz.addText("Evaluation run complete!")