Skip to content

Latest commit

 

History

History
67 lines (57 loc) · 2.23 KB

README.md

File metadata and controls

67 lines (57 loc) · 2.23 KB

Build Status

DOI

Discrete Fréchet distance

Computes the discrete Fréchet distance between two curves. The Fréchet distance between two curves in a metric space is a measure of the similarity between the curves. The discrete Fréchet distance may be used for approximately computing the Fréchet distance between two arbitrary curves, as an alternative to using the exact Fréchet distance between a polygonal approximation of the curves or an approximation of this value.

This is a Python 3.* implementation of the algorithm produced in Eiter, T. and Mannila, H., 1994. Computing discrete Fréchet distance. Tech. Report CD-TR 94/64, Information Systems Department, Technical University of Vienna.

Function dF(P, Q): real;
    input: polygonal curves P = (u1, . . . , up) and Q = (v1, . . . , vq).
    return: δdF (P, Q)
    ca : array [1..p, 1..q] of real;
    function c(i, j): real;
        begin
            if ca(i, j) > −1 then return ca(i, j)
            elsif i = 1 and j = 1 then ca(i, j) := d(u1, v1)
            elsif i > 1 and j = 1 then ca(i, j) := max{ c(i − 1, 1), d(ui, v1) }
            elsif i = 1 and j > 1 then ca(i, j) := max{ c(1, j − 1), d(u1, vj ) }
            elsif i > 1 and j > 1 then ca(i, j) :=
            max{ min(c(i − 1, j), c(i − 1, j − 1), c(i, j − 1)), d(ui, vj ) }
            else ca(i, j) = ∞
            return ca(i, j);
        end; /* function c */

    begin
        for i = 1 to p do for j = 1 to q do ca(i, j) := −1.0;
        return c(p, q);
    end.

Parameters

P : Input curve - two dimensional array of points
Q : Input curve - two dimensional array of points

Returns

dist: float64
The discrete Frechet distance between curves `P` and `Q`.

Examples

>>> from frechetdist import frdist
>>> P=[[1,1], [2,1], [2,2]]
>>> Q=[[2,2], [0,1], [2,4]]
>>> frdist(P,Q)
>>> 2.0
>>> P=[[1,1], [2,1], [2,2]]
>>> Q=[[1,1], [2,1], [2,2]]
>>> frdist(P,Q)
>>> 0