From f08df17f140b1b071c454d5351f03614df61805e Mon Sep 17 00:00:00 2001 From: Frank Schultz Date: Thu, 24 Oct 2024 13:33:55 +0200 Subject: [PATCH] add homework task template --- homework/ground_truth_data_x.npy | Bin 0 -> 16128 bytes homework/ground_truth_data_y.npy | Bin 0 -> 8128 bytes homework/homework.ipynb | 205 +++++++++++++++++++++++++++++++ index.ipynb | 4 + 4 files changed, 209 insertions(+) create mode 100644 homework/ground_truth_data_x.npy create mode 100644 homework/ground_truth_data_y.npy create mode 100644 homework/homework.ipynb diff --git a/homework/ground_truth_data_x.npy b/homework/ground_truth_data_x.npy new file mode 100644 index 0000000000000000000000000000000000000000..5a967d3d675a65deaddd45547c0b500f1a16735b GIT binary patch literal 16128 zcmbW8_dnI||HrMYtfKHvQKXVoG?028l}Z!}g(gB)c1cE(m6?=MR`$%!d>&i&-s{+V z@A*03f8l$6JFnO6c5c`0^}5b=Jsywy*jjTOf?q0&i@CpgF=5Edwti&>{eH(}8YH!$K$E<(LUKB+UcUD7-2rN1 z@r{a9lQ~CNelKIxUA_s|%)E1fsUz18}UnmYs=8< zR$#f<@ObOk7#KK&u2@?RfbqxhK8Mqd!0uP9_r|^o&tBKT9l+`8~cC?`1|!l#G$Lzs3B9fcjHbAjGuz+meO)Cw3_Uq*64&`rlwK3#ZrDyM?r5YuY#^zCslKehtVb{?yjA2&i}LjHdCuyE+QarD#G;6jw}4ap9iB!P-qg~sQj zli;r%E;z8Zm(WcWz`x&a4!@^c9tzq|L$vxl@Ga$XJ1P*agcB1yac=J8O`YO8klVfY z4vkk2bkn;%udLmK$Q%Y&XT4rL+I4ee(sTsjhUzb~z(wS~dM!gTc^36Q|9&V+9SR{Y zRgwz!lh9d>H|Czz5;E#4*Dfp103TcMYU|hto@m(o+F%uBH}X2oZY%*o z`+RDPSr=q_?CL%!xrJ`AYY$EARj&MIZ3topsPd}ubf-*biK%^Wx$P`|E9W#kpqq;MvX_5r)~#UMVU=CcXX~+uYTy7r6E*RvT;H^! z@g)3IcN-DCy#TcB%LB>hcko_f&b?m6zc9Y%x>#J-BKSr3Namhjg&I@N#skunMCJV< z*DA$6!R3Hbs_c?QXj088dzUwi_Zp<{$DRwrs)L8K|NiQQXq!9RAy$KECo?>5p%sT8 zoSgS+D>tCCygQ$jvKn-nz*jVF`(gtI%LMxZn>(YXn^1s`1FXRX6e7J*v^w~HW@ule=U zeM1=Va)awwU_3n6oLLtkO@eu3iL~bBWtei$WM3*v!`eWN&xf84BBSJwnjbet@Uz28 z!`9&vTswd`GsCw0bea1tt=80vH56xFuo6H9m*_&rWGzXC& zFsgSUXbODQ?&UrZFNL%FHbr`6yKy@6Pjh7E7#1w4dlx4yz|kk>ORI!`INV!uLoT-t z&6`4P)FP50ec*^Sf7t?zKGq&N#oU4Da%S4Pw-ZGF$fl9(hw#pS^go6KI-&M@n`TV< zAWl2yupezG2k+y>b#_u?C|?uTG%eW=2FFE?t(mQ&B0o(azfA*{Qe?Py=+q#kbanO1 zl`c@4ln!Vv>VW2$xQ%mnrcwCc5tUHADeznib4v-Rhm@>D<5S0mfMvgGaaZjQxLsq~ zE%ud~P-^)~Q!#84#`4=KqCA_y=A?P_vxP3yFwQxyY0!yDPTSr^wR7NMZm)+ETcGrx zO|%77DdZQQFta!_i-rfZdE0pVP3e6~>opiI>it-CXbSen`#VsDvb7AE| z1-O&_sHDSg1dG;P7`}H;p`>QVp^r&YYjt}1wjq)pnD;@4rAp@guX8X^|?T;?Tkw&_-abQU; zvEkoefO>K7s~A=LFeqDQuVLT_Y*+AS4fju>QS8Hvo0DU3zsN87m-QS3b-Yi?)*8gi zEFtF((^CP1n&XZ&U{@uB|54_wHulycuSiVikLoqnJD;MUQgpH4TM zF!!RIZcNW49)6pkSNUHEi0^ODtQi?av)KpV1%CBG-D~|vX7{Rqs$NIoV(K6!Dbp4l z>uACE(yybu2ZmtoYc#&eYlQ=qe!*oMoghqINAg!%#n8C4ed`o&&`?!mAU${pX1~=e^%!DZ_E zZQOt6V6juiRwzFc9|Q_0b|o&MfXjCd$KZAFYS^59_^}Iwl0i^|Dkoa48x!+>Wej!ygV~iK{yjxepjZ5UXeDD1L<}d*V}cs6=z6q_yz>TJ zojo=qd9VQ(_D(ryJeh~+m!~MKl}91+i`lERzw5yNXYS-dl_3Z%yZhBaBp>xtldt%h z{Xr^Wt4n)0Xo(eKt@YBUmvA*mm%n#<9H0F1(4NW|#T3sAl}u$t*eR~)CO=w&w;B|3 zCoj+8D^J%9L4OLOPsq{45S~mZnYfvH?ae40^zv-Y8Jj|qP~#bDi%Qf_inufE-H2Xy ze`rllRbkO>&r{uR8*y;;A1=gAgBbf)ZTgjY2*~7bwXPikA@9>qw|sr^k|fsxV^Iz8 z<=s?@ou5XNJvI&HQ`0E3hvKA}Y9E-eeEdpJ-wcE4Tc+#<%P=6}_Sxh%d3_&w`|5jA zJA7Ey6r=(2`|9G`eY}#Mh_gW|qs_ChK4^343jH|99p)PmD(C~+i~Bj4Oh~x)B^JvH zw~^_R`GMK7VNg-NL1%oW5Dqrn>k&UO0w36>tX6{;&}8J_YvYg2u*Pb8mGf>I6mUdS;@qT5KL}Z* zy>`+=5a?yieY3iVmm|*jT~VvV+O5=5j(@Re^y`6auGuOaw^B&05AOkaivk|wL!+RL z0h5y-Mxa|+dql*z4hQW_SkE}8VZ5#Kk*5p&kT`pQ!M(OnL09X6 zcn3VGk7;yOo5M$vD_g2b2tI!=eg1uR1p>lsgx|D|W9a4mQWp2Nu&`O*Inb~VQ)`Vf z%E_od_Eajf;x z5`6Aif?x45t?~6G&^Yj|dd;~D^f9BoTdN74l(h?Vk@r#Rmpi4?lk3Qm?C@astyz4% z5lHykxQ+TDey_c>Ga)tFTD{(@0rT`lsTOlPP=9))&aY|_KFhtT6jvSqL$TZP)%}Ig z)cyAJCk{4(B2(cfp3n?%SZjIcSUZl26b{{IH!6_je5RcnM;DI26l(L`H40x;<9wt` zhH$2JkNW+q?J%^YbApsnfDXOF-#;8~gjZ~o-TW;*=mdY3jCH3m%y^gB>xpuRN%FNf zKePb(Oe?QtYK!sBNsVWm152Rlq@K{pmH-DtKa`$7w}|OsvKlOPbp#KECKMMyJO z zpnd#G#(~5E$T)hLR`3w{|3GTdq>N9-rQIfCYx>PPa3~q=FBut{&7o}l0nliZ0Zcfc~e+_ga*0KWb zO+az=<@cv#h~Vd_(!Gy%963}Do3q{gi>hj;A6ybzKq;g4m)pe)c=@gVr;F(um|Le- zU3t3?qiY2o))Y0OP3ogRUUrm37orB0f7U3NTg-$BhmM2F!S&nn%tS1wloIkCUxG;6 zq#qs2gYY3wFx96t6+-*&4W-_hM+2TSz2E8wAc!*O=4Ht)EN&>e%+fQC5;@m4n{7w% zq2!V1A-z^y&wT=`j~9?;NiDn0p#oA}bNBjYZ$aBn>eDTk$m<)2^=rS-3HW*UKmhmW zGFbntLwx>d1c{!X|5Vk_VedDItaoJHlV!7_Hb}P&Yn4A27X3r9o%JuhGesBPxi)@F z+-Mo6=X|1*gPK9!HFSUUBH5?@oBL}1a}ty$R!3iPF5(mJuZ1jO6S(?hI=g188INWk zu*_%-LSD+IT_tfdcrK2MsxGbqD%tJ)iblGS^_gikr}!?yAp7LAy!b^_kzd$+-_!;g zIY(Dn$-eFMS9$k+gEn6 z9&KN4OX-Ep;Lg59>nQF_a8xodcsJCCPwL|K`dhEU0HxAB2h}QYvlc9xdom6b$<`(M zPn$sKhilgE!_`RtC8DCdE)ng6V>P0~MS$o%xc%|z=J zqzZXZDC^vXUy}n}TkPB5_S~w66VEm>$gt*8&QlVe-;KF1{C*Zcuw}fAwra#`^<6LT zN>5>=-t&d0Vq@^yxc63Zb{{k(Z}N4~r-SI0KEs?&6P%9P3~(&zhk0I3rSB6ogpRWh z?}svWL2To!vXp%*-U%7tJ3rBg(+AT}y!t#3ug*N$uPm+uk3U^(Zuyo4UYDJvA3d1E z$=96M4!bpg&XX6t=|fZ4q#xbLx-y5B9e+;c9B)DP;OEA-o42sT@S&UOTsyq2RsSC5 zGJ>v8kIdWA6(G$nzlzR(qaZJ7JpW)|5<>CgT$08bFeLxdm^FA1qEM%+vJ^(I_qaQ~q#?avvLm-z_A`YdMj@y4*g)=ukoQ#p3MUNWi zEdhV>e)5r`wav!^#*gtyNwf8#_wBH=yQ3g?LMbkLi zZ((|!c?_)r4fmdPU4a#c+iN1iRD{Xv&eQ{(ov{ASP~t=52)ufdolJO~g4SmfU#g{* zBlA|NP9|R`0R5%5#5dch9{9sg;%Ya{h|QkhKhciH_|hK5(YGc?$+D?GIB-E#R!#KzZ?53gWwlo7SHWY+#7X?VHKA9gvh$d2Y$O2RJ5O z7M@9Mz|Sgz&4W}*LPG9p(4m1%m^qMkDfrzwrWt(Y?X4^UhRGBiYK3B`zPo(S<=_BV zb&V0rG&^C;B1F4`zZrzNOMD`9rtzDJ3T>1PCDB!!`{}>fD!AWF>G*-Z4LJ#fgU)NS zh@UUDWtgu(orJffn9>4VN(f`&YMsSh|GDozy{8}lXumQ%^mzm&MZb-7av+Gc&XHc! zRKV6L&1Rqb!|?u_mZ_lB9JC9hN59E$N11n4|52osq9y;cIF-2#tS{?lKD?_8+Ksf# z6WIGO?0D2Lhd3qS`u1!0Pj#c^G^PPL^rkjM@Wn%v_ftuLbYH<2VZ!Pdg z9e>B{(geXF_jRK($azQ0HIH|zGx)%OIrz_XF`WFjuOLHz9e6oib=xvVAa9gYnm@V& zPTV*1ttBQv#qh(^q4(w?U;d>*uiZBMm)M)zxZf8}EIFFw8Gv$*-ua>b)+3;-^ z*DUfr$U3)wg`88_xucfY8h$?=?Ojkdk8ak)`nR6*Aj?L0cjr*Rc~$LP~x5*kXB zf1OZYgawA>WCpn;yjck$hnmN%+bqG$$Ux5NF$PCrM@gDP_bCVd)@i*_ z5*&d#yZt@&E!|lB#pH;+(*&}2q$rrFHNr37!(s2_V`1{Ebl}#;JP67s2^8+EgGunN zpwB9c_$`0WflDXmp-KL+BjfxO&`IAA>K&g(!AHZ~A9!}K-auA}RN@E5^jDOP2Puf< zE;m%qsZ7ITb}P1?_kXdZ#olI|qa4`A%~!H4e*r7qZtbKc3S!m5uTLW z5?O@2kg@g{?_mfSl5J-6PeX}OIbTCcCc=}N-!0t+JmI_b>Db@W|#r{7mjC@gEzrf zCpA#(HW9g%sD0$Ww?mTu%@IZN{xrk#zL4=dd4C9AI^rhXh#f8on>`jy_?b>UgEg3l ziC^vM)IH`PyFY{Jw^0PF`Wf3?DkeeilR`Bcfmw*Vx4_<;vjOXY6A^2XU0`tK>;yrv z1uiNj&8rG^U{3h!C;ivRd5z0#W+rDKXfpNEevv1k^*Qms%5~!)Tw!LzYdej+>@*L= zZD*nMysLM+?gDbO{uHGouY1al_vNLP$j?`DlUGKz4$a=2S~+uZ9NhIcN+)y|p};Tr zTHu8Rv~>_3=58s(M%SYS@9j3hD&f{2ZnD2o9Eu}`_0&PALr2Gny+c62N<(GmDWtbM zdXi?N8SV^Am0oOU2ab4`f&8cyY%=6A@rjJW{R>Y5%3qUEcqiqFaM}o_7gwn^#**{0 zy4sLd)oq-z@89KSQ4dk?rf0SX5?~K)&DPk-agdikbz`-=5uUl5l}MB%5))(k zujWDDc^=}6AU5Q$+Z0-dIeE)y&qLui z?QGSeJ}g?Asi7h1S7`8E3)%qlQ)k` z+Dm{VW8l6j%L2Yr=V7&#TYxYLW4ETOLpX6+gN(@EmiT?Xu%rjCE8Sd8_gqIuZSL#R`mN{@XMV!_Zy&zAAnls>p3GI`4R_d$r!aIf zl*wsi8Fc58I2yjJ;GdXN7k)R7B2NivBb0^eo--tm>u11(s0R7DO|$g`ymp&`?7jXB!zt|`ATo2d z6GtHOrTd3yt1(nHm7nJFn}bah zyp$Y{H(`0&QpfR|^n|b}Dx(bdPSB&Sxt=sLfW-##c2p0F;kEWNXX&U3=nqIcMjh1+ z9Wi4R5xY9@(0SGIXGg1`#a^dt$+R9wlG3lUMT=qli`u_Qh6yNdq@&J1nGFThoy+)X z6wlm^VTxWMK}w=_lzCVx>Rj5Rf8C@R9B&3o&7CZRU;BAF{cRiJsZD6Lfp7t+z2z@9 ztgk|U)lzdi&jBc^G#?BiknlNk&bh;0vv5G$IOuU!%_by>nB6D@OVyfyAP_BP^`YX2&OPS8u zbnH08k2a~h%{WF(`@R5>WeA41DSaduvWhe7Su8qcVnti=^jQMT*uFgi- z>ve~>jJ6rCu^)Cj7TyT!L&E>fKKg_12_6LAp(Q-S;IE2o{XoCDDa4UB53zFzmChs* z3?6hzdL}Ujhd=S;9I!3GlbzdtFaMds_PZZQJFB~hoymJ#AGP1#XcHwl)U?4L%h-AmMF{AIvWmgn4Q$w+AGJzaI*O0>vV^Zd<$0H6#^0@=ZZP>+PPZBEsw+fW9rgtnpHNnlA?uE7KtTPyg7@RHP(dZ2BE)6jTv*s&UO1^FHQHby|A z`FsM~X$oRYq9PMJ?HDj$9J5J0RSSMH3P-Myd6D4ie~xOWhhTnN+y5UqXRv1dw^nwv z76~UB@4XjFfWmiT19m|x=xDtwqVd-#wq#t{FtDk_@M*D=w>taqhDIdA^?_jwSc+tc z&)mUXJ3BEq>`3URf5%m%CL6fNXX`Ce8sI0#Yg>oh8LY|Mx}g$Z35gdD%s6%Qp{3u% zQ@NAnka$EV>_A8m+LpdaI7Xd;o@OGc1ZW143leJIPLu+3&I{i-(QQ~4RVlw(_#MwL zXL~fqRDsIkUuONOBD^lweXeqK3GepM5cM19k$px~n^B_(o@C~=WQ|OL(4t@u-@$%7 zE&Fb*%cBGzXq#&vkLrL?vAXZ!zsBH4+@G!23xl}+M{u=SYZmTO_U!o>KZKim8rfZH z^3lb#y=ifv2Yr(H+_rn`fhO|NZ0Ml@JnQ5^w|yf4q%K*}&{%KcgL8QmkGRPkCCxu= zNOurtbX=dM%~KO(&t$$nv*7@X)31C8>AQ(l7e^*M$bMHb0()N%6E<4e^x z8m)>RoUUr-+1lHJ7oK_pRFLr1F#88Sx&df$l>MS;-Ug2Bv9f!KB#32W_x-fqjkzgS z`FDcXz`n4BclpjYn6$q~TXuE;<`s-w%roE zQd~MT^IaDzwvHZWbXoFavvfhN_fj6xC<8x_iAuf&BOS5wxN7|DI^wX`t6R} z#tX`7`?*BdapTB;HTxo`aoe!Kw&q(izLxmwafy2ws+okWi5DhN=ws@YWZzEw+(mfT zFJ6vAGcGKa85O{Fk)|@5hRm-*tb#mhHgHk_vd$kX#8WT0ENEL=fK%wgy@h9K==$!s zWO`OK^avgrb(imhYinkNg0NvYIM?HTgQ^Z1G`)t1daY3Kb{dKpNjUuTkl*{R1~^3U zrW&JK#5$eBX=c8Mfs;w4+No;+8cjain-vkk(sK07)BI&PeaClkCWZtD%xjt(jV4m*5V#^V}@BIa}B$!iAP+E_@6`R*9@;MoDKZ25~%J7KQ8$zvhWQ7*B*8D z?~w^mE;;t3_D~;mA8J%`wnbz(J;SW8@(*M>CaDiQuK~xN7~U)Y zWk6fH0Znd14bbq%&hy4D0M}Ad)tLSUUOV`mMVg%ZH3di6og?=LUVpOMWpca%W4sp~ zt>`}AjS$tJT;v~w6P^!iNeU>7$10L9fxm$x$ea%x~z&X2_hWA=_W*k3%u~jy*Ya9}7+&Sf7XM zF((IlOgC{hN=vqQmIw@X@i^ zU6Qji*sRTOKL55KlvV^TNYQKnj}5ydWot83>dMUqtW~ zer=aBR@>K(XOm@)Glnk%*Adz3Y_(Yg3Qb?tjarmQc{6VFcL3&W+q7aA3m{L&se&SS z0OJyV*gX;bhZ-$~{pbBgVE1yk>RbI8^jJSd61}kqX_Bj&@75!rB_Sj(#G)BvTq+&6 zMV3*DSx0Cha{$L=&!!8ctRj16D@`L!6_jrjF<$G5!+m~@Js)}}!ML77YfGyR*{wcv zayI+H@qrheBU0pi$9pRAVdw0sz_v#`+uHXgWliCe)F}re1r7>oXS%gKgZsU$2(c;-t8qq zo>=vcRpK9*=;W1%WS_(Uqmy?v?hoQW{tNDgrWx?MLbrpBp%^l$L%u&!S;pNvmJJ0F zB=C??_HQwoLe473gRz%xKm>5yiF{p*%4^N_dXM_i+%cE%FM0`0X;xeo+eXmlVpVb? zk?ik0ldbQP7Pr7>KIcO7!Wh1EGvRTNT!n{QHZ;5Y(s17krYi$ zc>L3;a^#cCWaWvNhxA(;a}(<%Fy9a}8auLr{IXwqB!6WCa||t~@5VQvG(GWfZY2*& z^fJY{4~_zRoAFwr;{qNUxOZ2PZVN*TMmaan457gbE3s<2QT)sNU1!R)16kI}f`m=S z;Ezyg+83Ty=nmT(!hUHUBBUnN|JLeM9HnM`P0$QTp1g5u#2VG-hl} z_GSFWj~gb>`D<5jH(@E~rBN$t*&Ozp8J)oi?Z3qmWPcv%C08m*y^K7430W8Sl!4>M z_y02gYlC3U;VZYp$bHajB2@!CEwFI;aP1?0YQmLIl3A-{UvS@KFKzhg9_*R?$P;JX zM&{#-pJ-%yL1wnI+3CSJmOHKAE!#T`FU+=mep1Rn-6T$^bn3w!v8Tsti_CuTZG%MB)#(=UNrvU*M9r4to~cGXAqn z50@;BMMnMJRhRj4q`96NY7;Vn7pB5)NL(q!C7MUyM!7=a-ch5|S94_KeD+q%y1GK;O}dt zOyB!0$osuVOuD5Ap!#u1Z{GmE^yp*BX6Of|Y~9m8o#&wD&NWY)fi&pQ7H4yqUVwJu ze$!sEPIf%CsKGJX07Y-PJ?s-!;l|#QC$fRVAm}amp5?!KNRR#zSx(GAJ9#H((M1L# z>%YsVK9h5t(-wYbFYuu0MM3P=ZlWoYUWST% zOWnRJVX#hpoT}{IJjj%da6Z3E!e7LeW5RhGU{7!Fb;-076~j&pDOA=0y;@0ZJb#FeRtOwm?XggObIB^Eq(hnhRSA0`&VLdKfThh4VMnfF^m_QpPH-)F4&{I^BIaSEHUv9!>O)&Pa zhg$-gp!a~9Y^L}iI-P#r?oT;^ZW|B9BDN`rVQsnk-xY^2`(3qbZuTU^$xEdRV=o$f zf8Kre$T}{m-w0H$s{_)f?w7nJsbLwjvNG6n-Ka0KJ{jCYR{tZs9Kn9YgQd3n zssN&_E?@0#!$P`4bYMjK9t&{_doZWfZrx)an6zqhDyO;_?)oE z011v=eEOhPv=)xBp7`=Ib^ygv*pIW(_QKw_xX-S?W?@g<`r4!34B)(jHNJ8!xW*Mn za+%vf-ZhiIdo|kd&lio|pUB*>T_FghF4W=vlspcan}6YmdZX<}^#QOPwq*_=HR3Wm zM%dIgz*Qa(J4+KP!T^c%-*1LlkQK=HCRKOhO+mA?M{lXF1H=C}1Fdlqv{_N|IfRN&TM zsj;&IBn(X!bS5bELQ(Cn(+z86PIQ%)^@}HYzx$AJUD}Auzx6~}L^-GM)Q$B-HqAOb zwXUdpzj*;tYGoeWX&6Am+t-{a`h##-B@Gz`DcFGWFC-+Ai_~}AV_&PQJl=h`nq-;RcS_0{F=;JOOGj#Xo&x%yL%is&YavC``8aU2Wu8H zu8rZR5V4^4TnggY^J@<;zb^;zvXjXMv@^K)V%kidirn)%HC}r6c0cOh>6cp7B+vIO ziBF$?PJwhm^|KgiA_N|ypm}69hXPb3L$)K`V4X3Oc+h7EAM%#zQ88yCyXgRvi(@mM zDO9x+pqfRqYyKBa1eaj9gpQ;k z_a07LNA-Ukgsh%*TFusPxSUwM6ZVsWIN&m-U*$9kZg#%9dD<=TIJCosK+%qEYrt>UmxS^Kfc8WeO9DWDN(N7mcoy^NM)IR4p6?$+Wo7TXoG zye0Q|vYwr;R%Iv$*1|%W%nx<&>7{y8w{9D()xT^#pwkE!ujB-s>{|h^Uae12tR(1R zco#&p`~bT9*M+~5bzNN8T-r+iJu|BMtu)Lb~z86Zb_bu>0_zUd140Sb|qmaTqeemmIGfZ7PXU*YBMTmGW zwttWR1b9`iZ-$;+0#UXzZ|Q96!0OEv=K2+HJnUGdKdae_Bi~ImbSwhF^x+>p# zw+R*duRjTHXx?FQQ4WP}^_Q(q8?3~}NJn20>N30-m~{GTrw?lH@Pa^L6;vDO3HLCy z115KBY~CgJ#dU9TYD6yM@dtkrEfkC4Yu=Lh#+4QfUv^U(dRq#M#YPJfd&bfBzi4L3 z%?12K8apVme-6(v8SK(B$;RPldqZj^>d>8QEW&7K6Cp4+ZpJwdbL}POdo4!b<*IHw zCCfCX+kPvEU75r)u5ntCm+HYP>Kn5{{UWS`6P@SD2GAVj)|70ZBM{O*2FDgM5Zuh< z=4ew|F~>vyR;y7vn65;>tIGdPrHKyUdirX~s$~LIie`>g5A>nV zmEZ@Rtc#E#R=(?9?-=ekOS%5Sa1W9VM+hm1J!T>k>qn29B;9R+-$Ep7v zC49Q~Uo38g;<`co!*PSa_tH2n!DR(C?Cr)a6+Q8rN93Rm&n)JLU7XEwpddPDj(A3{ z|HIGrGM`*x$$p(f#9p{^2|E0Eo{}UsK(XIFU+8`#{A(8RQD^AGFDYE9=3FgMm9w0x zG|&tMb$YtYZx`S}K9?|qL=!4!Wxl*YTZVf2)#7{a}9q(({X-1OAg|m}-2DOlB7JOA=s|n&7YOTsn zbi$B>oOI)*Zal~R=h?%+RBXC!ym%{|1QnjKY+vp!!zzcmLglMD`0wDJ1D)=h=r?rr z5#{b-7#WNCPVu`I9Qe{Kr7vuvtDNF!!(tKkv2WD8HkgKAnkCmheU5;vD~fbNDcul| zM`K#|yAGA!_zb<}oke0St%#uT1lCbq@7#TJ0+n5~fOBjV-FAmiY%m8y{^fJNR_1eP z8xgUeyQv>`O85-@Xo%3{KR9)jtrJ}pJc6nNsR&;lo;0JrxrU8rVpK}}Ca`RL%*pC} zBQ(zND9nyd1M`f>!}{Ch@L7NRO9#1EDKU8A@+(Vff?dgMu$oT`E*ueNd_%E_UHiCY zhdIZvh{2Q3j)#U|_Tspy3c2g&U#35=KfVEse$ zPbDtwd-voooEu{npQ*`$E1e!ws^odWWMpcFpp%xv!ybO;vT_ex0HVP)5K|FXUo_g$J8=O$IxGP`N4`R12dKkvh5+C1U z9T_uPgu1l+EF;kkd=W0*`{Pp~%4PJ#ILpuxn``>!uY0Ef-Tb8wX3BrT`a^|o!Iuj7 z!V^^O-FT)pSwTpaD+Z7YTjP&m_crEgz1 z32&J$WZRqyK#L0}MDq`%K(Du&s}bECh6$Ybv2%I~{(am<@o;e)oxHe3RN~3KY@YD6 zxXLR0m1i9vOw$=JANGWcp=^c@Wc> zj5250g!Slvt2_@^z_~`o-15l;nbZ5LP*=8r@#r7x#v2>h7ji;QA!r^%JPiZiJsW_B zIY-O(oGU}uuW;b+@m$#E;_Vdn8H95`4ygT%jKok`%KJMsqNBU@VJya+Cy)8$6 zuloPlMm%oq#>rb>JN2**(wW=!_Oq8DRZPfYH7=m#-&d$-*ouyxwcKilmLc)GC@ni_ z1TA9>nAUEO;>){UavQ{Eh_z1`P=ELv|5LuB6}-C`_Z|`7>JqNU!gH;&%TWb5@qU_R zY;^*A=#t*h^B2PQ?vKxYnk>OI&s`3MYxOYxpXcre?gMbSxP$8Si+<2v3yxk6=|>06 zH^SeXTR^ey;(^dJnP4H|RyUH-j1J+Q8#znucw|Ur=C0iWF4EN1{daT_J|4-rRMc7q zh71Y+ywTubdf9J;fW-&$8sq@#5LG)bEZucvj1F9A~%NMqkM8QNy@tTq~G?C#9 zee6{W0s6oAog7mjCh}tIyVhx3KCId&`MMoQp3IpyEWhK){<`aB;#7pX46Pq|Hhxee zofz=UW(ZsJl=x}NmQf}nbE8vt9eeJ-zhB}>OZZcAjcZVU7`_^?Cad$UfE^Xf(FKt~ z9DaTEmu)vKf$d`a-f5OKV86L^$#}j3nVvTu{u48V%2Gd;WW-yrMaw8!nQ8*h=Lp~b z88?nEZ`C{UVRm_BnDXzi+=^Tj9U;K7qcR!fCiB*|6F$;QL7%v$|?pd&+ z--FBKT+FzV@5~}SG3~C&#pYM*aQFGdNTTHkjHNwRSRNwbqod9DZ%nq~EiLl^?(gHk zqr^iJLmawfpG?(j24E5JSFF!Yjtg&0;`zu%5g}HtPg~*oY$ZZsm5l7oeqJ= zDbO0Y|JE~7InduOA=2NTgoh0}y#KDQf#Y6^dtEVKkfN&kG?QB^JdM}(m~Tx(F275a zPKqONLHhV3*&h|)bU&^(*LetfAFfl1)Lb)k8Nz9$#PXRtCHX`LVI=ceKLt6D zA@X$7`1auo;Vk|djD`4PrU9Qa=b>Y4n91NtHVl3(z%y?aut?FUr}jcF9Ao%Z*W|j0 z>%NUbUc4<(erB1g*|-efTx+dN7>LHtF;7{;X6Nv9?9HngPVqoTA0_NY?r%k|bGl3@ z&H;BoM^16`6qJm29(08jEC|&|KDm#~v(=8|=6&sffA75bc&x`DW|;P^KJ^L)?L0x3 z^Mm+`mHE{08A_tZ*2;xTY+sSV5ZjnEr{Rpv&zp31zkot%A5*peH2TPyU6R__0=x7h zYc`&XIAJ#1sUYzc=G@zscf^N5?J_OxPTF_>TKugNPJh_sH3B!p{Aker}+Qzq)Pdv~@$%0*`Ox`W!e^Ub1@tK`jgSoypxoe_i?yZ*qXh;b2d-yhYnWg1oVqk* zJxD&;3_&oFnoOpCECagU*C$O~iO>$)FCWZo!t@g!W$&#T(cn}|Rm2At&^Fy}m6HuZ z*OvQrbxq3R^cUKK?R*kxAmbxMi z2<}KN{O{AfHdMT+!&du{jRR}lo2xwAkly)lHh$$Zlv*>YeTmbCgPFgbzV&dy=$`53 zGeI4wKc>=e=OTbk;~z&9pCGhSJR%;sA}W9Op1>hCD&CqaxU!)fMoB=@8Oy@x1hST% zKT(&3@^o=qF1%2`Tm8wp15ZciTbwS0XaTUwySVUf&!seO@{NXEE{M~o_w{8(!?(0kS$iD}5j=#T7a=QCW0+$oV%?2(T08W&Yg+3W3Sqq6JX-UlJSt~Vpy6VtAsOr%v^0M)#zUiaXTz6;*+^(aX`FaM4t^o zbjk0lCIrx%uM+%Pp$0~eY@+C^r(hDi>e*b%1=iA+daDh&V6}L+GMQa~y_yUBmn|;= zGwHM3MT#%bODMPhMjQj=i_Psblhp9)qjysWF*p0chp7Zd<`oq)~^G zUk*G3mZeAG@6XHD+|2fTAE0lvrX#9hmD?HG5eM3D-@iDv#dwoY3CZ}_d ztg+B#vNZ=)yBDjbYYKoiS~9WgYYF6@*>7TKEI|Fo<=?zX42ayYQTRw*0Q%>o+Chs2 z|5TJp_WKBtYG|h%OuQ%KdE&|JkTj%?F6hjlM1c!^2@WN5fOJYlLgkPn1Sw|wACu>z z^SUPl8|f?^V#fo4Lb9V?1(zT0Ft|VfI^BnlB;j*eDu2ifpCatM^BXWoY{rXb~GPvD-{50N}N;uNpkgf!Y! zm*epQ2sJNIQLk^ph=03=-x2tW?CRPbl3j$7DJxisAGpAH)+=Z0#KL_KU29D%+AuQK zBqa6#BE^@J-G8DKspCFh7v=LH{cc9yElLfvI|z@gHRGYG)QzDkdI>7ZY)tm_%R)0Z z={?#@GGX-h`p-3b8AzgyX6x&nM{2~fYQGjH(9^EAS3hEb_zAU4$-Xi$J!m`VbzT6Y ze`X8S>oZZ@WU&8)WCfa~jEA|WR-jktSnahXrNBE7PHBp6!-+d41^cfT1C9CKCuHee z2whUW!`r9=8ecXP9lY9zz5n&UXA28~))SZ-=1W84YY(rt$`@f=>Za6UAL5*noRnUd zgrPqB_3!OUHIRN;dAEK~6GkR2kcZS(eQ8$Oy28mKT&5pyVSnS}j{YA_qnwWx5-!-MeKV#$(r^fIQulksXq+0mRF z>DCTpOg`33?dE}R#JNI=a6V)*d$h`yltb%1JBMide4wb0kJ-JcLsdWF{^w_ib8pbx zD=C$TmDlcN|Ju$2*MUJ%;%_16`@b}rcPmP&>D_Jg;K3k&K>tWpK9W4{+~-8yMb+X5 z=AzL&5D!)RQ9sy%B;TgVvSpWmWIX?$$bu^vx|`QDu%rek23jRyCNzjBSN@l_n1#K~ z!;$w>Qh~B{)5h)5G@P5p{Zxw$==I9hH8QXWCv>xdw0InNSDxZy&tfxh!1iW1Fj*5*+`G^&?;}J09BhgfqSi) zpsbtk_*9Go;)QhEj%Yr(t{(nUu2+Cwi9P{uo2%eOjGOmtZaof?jdOfzc^KfoK7$zqbq5>E!nycYH!U6h0zESq^ zY}5(Z{ax>G4pOcv^u8WPpiRic7yR>vdc&-Id)GSb7AhZB!bU8TPrL7=M$GY#$MXi$ z2;C)?y{he907}e#H&I~Ujx@{Zt(^*9*xP3Esp5VzL`F)nZ0_@6SabKh_p=>Hzt80B zxFq1R!Iw>M^8^sb4-K(fSp(GWmf_-y1WwC>l~fyU{StzQRBJI%KK-xTfp#?0ubQv*nG33= z_f8!f-~#pUmdyOYa$rq_Z5E%)gUFmy-?zWb1NwR|rzfkcfR-|Uf_myU>Ih3`C!XYk z%*4B~^Tn+gayiMXBdZaqX;KW!mOT8l$-I1eGY72l?rJZnt^kc&St<$}iMd-Gf2C?& z1#I8TO9@+3hr=EXCbWHZNE1Xa8@0ffS~$@svU>9qZWIFf^o7`> zegPPpO@vvyv0&n9=9Yn}a@;xhz!tAoHj?%}+GMji6PyQ*r8^uhfahJQlgZv4Xl8c7 zf4V0Xj+LJHS7K9(G`&Hi@BWcUIKCDj$T> zxb2%f3qrkZOX7|SfOKJHni|6e=yl5%xo?ib2@BgbTXt0gIb349k`W*1ji$fq>BQWb zby>6KS`7Afi7d(+O~=ZtM8%=EEbwTQO)?y10e$Ps(+@jSfP8jtjF?Rc@XSodEsX@g zu>UO~n65;oV3_5WL(Hwki|)Mi;XtdR`$XR~9jp=>`>y_!(M) zq_amyLw|5UXiq-=<%$5DyyLd)y3>p#`PI!vBUYFz%#@fv!~)~eE!~n)`AB|MyiV^h z56(&Ndh}(B5Kph2zVIo#4MPpDRcEY~?mh zq!PODrrL^aCTU1vIWK?Ai6rXe@VX(L3&y98-wgLI2CwvQ)+J@d_-yyo+<#roIHXJ# zj19D4Q35+nRgMF$_HoKh%d?T@ee|PjRuWLOAJZbEpWyr{w#>w`8mv90*RTA(0D8rS zJnk(b>O1mO!Ka-8a`L@ZJN_^+^F&pGre;01=BK=jewhLC?sa(>jrdtf?CFQu~L1tRiq_txxWLvN{y#e5Wx68oJZHj683@d^5is`w_IT;TBEJ>(XMd%5c z*IGNC61++N6+9=82WHI^l*^VS$jskXB;s6zI$5t#`dS*e=n9|PX*ZxSJMwaf6bCXN zyM?TZW+SEe#(io3M_?8IxH{l)DGq*dE0TFv4e8qRbXJKFI($KzThq83Hr9_FJXqI^ zNrzW_e@*CwQKiza;iFH1F{2q|c`F}l(>`jp$W(#OT4rp3RXvi<7eupc-I3xcwW(Dp z7bw}zTk>ntz~R=nAPaqh&*!AF!ZHeBaHYihHBLh8TX)gB!&8XcFF#n?X4;6#k_LaJ zw$}jdaKqDfgD5boojl;mt-#I*Bc?6kr{WZ~Qn%eK07}Qg^lRdQsCr>RZk`htC~>y} z#x`=09{KZL-03(-9@xy6JKB!UBDLNY6c$+V7K^!du%I?4!B!%^5S3RaPahj=#R9fn>Rw^itX;*pdih;q^ z<+q&&iT;uDjBQLH`r?DNde4%_(0xyw>?qNWjn7kmG%6AEr{`pm_pcn3Y)MF!nI>?5 z4Tj z6Z&ZRg}L*^x!6mSd{TZbAD-RHp%+ZGBTM7kb+=ngh%|Yn>*|^T5pr9@4kUA7w1vTF zRH=qYv0{U9A5t(LW`V&F>0f&q4=ABk^A5>BLpo_nF?$BV{GH#{ zC3jm<$K_nPaAOHj?_Ci|d71|#y0_J>B|ES)*HY?QodDym_gggXDMQw&pLcZwD$rGT z|H@zmHk!S#)zES)1FyMdgAuQpKsxb;E|}cCzH^BRJvldO`MMNBu%D^>Quc<_WgRM7g4(~lg;O(aVodpx=XqJ&9HSc@|kOlWc&)7bL zUrP-}Ze;PnSm8m-zsF^05h`obHA(#L0_LGUvn-%n7wo2I61v1^>&j1r9y5D&#>Dh( zD&7e^k}t8A;04J!Qb*srfoj$~UjBFmu-5H7!#p02)N28A=@$yXYxrB}b;+0DtY+L}eopiLC2eBa$Pq(dJ&4$hI@SFh6I$mX@5xhe>u@bJ;{02Wk4tNj?Zw;28@z5nhr)HOGf8cj z>Ujb0jJBai;b6}p;K1qSheizKcrali0lNwW=$uk9ZZ?;gTgU!AjEyGpn~mSfW&c$J zY3DOLwaIXB=-m8Zgy1io<_!h@=7l)=G4xx2Nj_Nl1O*hi*5KRYe1jjMEx2zzFR9=( z8+nO|)*WeV*gS_XE*`~)#+++2x*Ej&H>J8qN(jASw=m8!hz}73y_-8HStu3g*E)dDm18Gytan$SIkE}IxNZ0;1*r%MQ+^~0uBWmjInKY3en`uBFE zK0LNICNmD`8^V`IF&{&S*pWA9iF&?h?NskCZ%5`qpI=MOi-EFwAc(@qL{f0tOygt# z9y|P(IlGb28&S6U2~}C3|Kj_kSxgm3DDKE!e7^zBe5{V@xV0in?9lNf`A}$`+sCwW z$wlfBxpQib9H44*7N%qozAoyHYT1iO2p#Qp6cZ~3SKAkYRq6#mlH|;v@{0rU;Gd~8 zveih=EK$GbSPV&f?Q)wjS7WX4lm zrFSFJ^%*6kvUH%TsXJfuPXb2x-T70Jgx?ON9FiYN0r`Np^k!2!1v?VZ$pXeEwJ} ziXE&5IjxSsKF>;wTb6(GLsB(H&Nn*Ltw7{y{R{<$X&tiGRGa0OR3fce`276QyTIID zx%`hN0~9qBqEgrAU~BrF-6fS(pm<0-Rb33VGsOJ3XlEPOTn&m&A6y?>K7+{bOunCG23{V?dT)ED5z|GUAA0hf zz~P4sQ7|tD@^ktJ-kTci%)cl*cLAaAN|uCw+;I;S6T(B)!y<9Q;7OIwTLucq^_21s z9`+tAoIGY$i*jlQ&h7io2IG(0_%FN5VDwC9mfrg+kgLlHWn~e1hgqa^lhCKFv$I`~ zv=~62oxYu6Du8{l%_bim34h#g@U%iC1>Sn;Kg?_=^0_kFv8_7@J+v-d+MQPlpT-aT zA`f%GOZI%$QF09!RLg~5CvZZWTH-wC?+c)q%_|^9-vdUzVDHQj`60F%?vb$d_#naKG)oU3zj%~P_>$OjpMwqKQ~&uMY(tv1Qj_)LB#fR0 zMy(GAb@I-BSIMhJdWoUuNwFvh;wj_@rE*{>O>e^&B43LO_!N8hcnQ>bJ?#!lZA0bV zrFLhxu+hNCrM}@H4{X#vi5%P9fTMm&G>Tp-vWjCB^IZ@aJs&r#BM0<-zbKU$R-l;m zWlrty4rKl7v-zkVgVCgUhhGr7g+6zDDl;z&2b(vMOCAt@@pgadr||+9-d~y2ncRjH zB|BT={b8sWR#sA`nGC%blOI?W=Y!(TNAba@3UE&!*mw5xpw{Qdk-L-vbYE`qqo$0F zqqmdxJR2kYP4*ErT8^Z~I-CA|z@txW z+WA+d;8FKh)?A<1BN!Fm)L5U1wX1L4@xESwB=6AoW1pxPnzG1um3kwNwuwv4ZG4Wk zTN9L5wlh)rAbl&bA_9^!b8~6|1N?S`a`lyjNWbYR)p@81N95Oe#GVpjoT!|m%*lL+ zvkq?44lV{Ax$2+VyGl{`M(4*!C85vPF)n+pVWR7ViHqU}f|s+i?+yi3LF9$y)T&!A zkg6Qv7E=_15lzO6JTb(5&x>-Hk22d#`<38 z0bQE>azS7gFc)_{E6^^6PRm`Mmga15RmuG6SX~X&3&(V}+)9SgTlVW#7!tbRD_1jS zr#&(fyEj#mGlBHulj$X!3&1+t<`>AikF=?z;QyY}a8yL6N;`!EI!YG3Cx~24vC(JS zdV3=0R!!V98<&i#o0e_-ZQqLI9p%>(O{+lMTGN0y7s06t#)78iV$LNlhE0G_!}{Y$rARNcL{&r z@pR{{cQ5%DqtwNwwdj(0(#BDrg>$=+^XR^Oezrjr?)7cT}RA~ zPo$@bsnJloZ`?XZpWwY6gVB!-s$f(8&!-N{1t{K?tYHvTkNdqVoC{C1BPDu7W&Ymh zSnzQFQuc|LCBr_hdcb>DK;SHzwptNXR4BmF{=rw_ z0Yc0@H}8&1D)D?eZmM+wm1tG);kWxGVlR5^hKyG$p+8@Kk35z46sYd|&dh43!5(Jy zr|2JCu$X5!;TXXpeD&u=?_Lu=@I$WXkNE_?%4#!?amxt(p(0ClBl1QI#sVc$0eD4z zmsW1!fY!`^MLYj+(N&IGbV9!bXkDR74>(@X*nIO%{XrHm;(n~VBbSXNjm5hQ!w({B zkz5_i^&Zgg%=@r$SuRT2SI0XQ@j>PN;Ja-m1U~ WmJM=`E)RsLRwBhoTI+Rc3H%?Tu~1w9 literal 0 HcmV?d00001 diff --git a/homework/homework.ipynb b/homework/homework.ipynb new file mode 100644 index 0000000..1638e13 --- /dev/null +++ b/homework/homework.ipynb @@ -0,0 +1,205 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "798a4df1", + "metadata": {}, + "source": [ + "Sascha Spors,\n", + "Professorship Signal Theory and Digital Signal Processing,\n", + "Institute of Communications Engineering (INT),\n", + "Faculty of Computer Science and Electrical Engineering (IEF),\n", + "University of Rostock,\n", + "Germany\n", + "\n", + "# Data Driven Audio Signal Processing - A Tutorial with Computational Examples\n", + "\n", + "Winter Semester 2024/25 (Master Course #24512)\n", + "\n", + "- lecture: https://github.com/spatialaudio/data-driven-audio-signal-processing-lecture\n", + "- tutorial: https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise\n", + "\n", + "Feel free to contact lecturer frank.schultz@uni-rostock.de\n", + "\n", + "# Homework Template\n", + "\n", + "Make sure that you copy the template and the groudn truth data into mnt/home/... to have persistent storage. All data in the virtual machine is lost, once the virtual machine is deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "f12c6bfd", + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import torch\n", + "import tensorflow as tf\n", + "from tensorflow import keras" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d77c65dc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('2.3.0', '2.17.0', '3.4.1')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# we can use PyTorch or TensorFlow with Keras\n", + "torch.__version__, tf.__version__, keras.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7c0b6bca", + "metadata": {}, + "outputs": [], + "source": [ + "# we might want to use double precision in PT / TF as ground truth data is dtype=float64\n", + "torch.set_default_dtype(torch.float64)\n", + "tf.keras.backend.set_floatx('float64')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "74bd293f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "float64 float64\n", + "data samples N: 1000 \n", + "features F: 2\n", + "x is full column rank: True\n" + ] + } + ], + "source": [ + "# load provided ground truth data\n", + "x = np.load('ground_truth_data_x.npy')\n", + "y = np.load('ground_truth_data_y.npy')\n", + "y = y[:, None] # make it a column vector\n", + "\n", + "print(x.dtype, y.dtype)\n", + "\n", + "N, F = x.shape[0], x.shape[1]\n", + "print('data samples N:', N, '\\nfeatures F:', F)\n", + "\n", + "# make sure x is full column rank -> then a left-inverse exists\n", + "print('x is full column rank:', np.linalg.matrix_rank(x) == F)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e27dec14", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5wV1dn/d27ZXXqvUkRFQVFRLIBdAXU10Zhi9I3GRJMYTTG+KZommkLyxhg1r2iMLZYYfr4aS7KiqIgoIIg0pUhfhIWlLnV37947vz/uztxzzpw6M/duyfnmY9g7c8ozpz7nacdxXdeFhYWFhYWFhYVFm0eipQmwsLCwsLCwsLCIB5axs7CwsLCwsLBoJ7CMnYWFhYWFhYVFO4Fl7CwsLCwsLCws2gksY2dhYWFhYWFh0U5gGTsLCwsLCwsLi3YCy9hZWFhYWFhYWLQTWMbOwsLCwsLCwqKdwDJ2FhYWFhYWFhbtBJaxs7CwsBDgiSeegOM42LBhgzRdVVUVJk+eXDQ6ZOU7joPvfOc7sdb39ttvw3EcvP3228Z558yZg8mTJ2PPnj2x0mRhYaEHy9hZWFhYRERVVRXuvPPONlt+nJgzZw7uvPNOy9hZWLQQLGNnYWHRonBdF4cOHWppMkqG/7TvtbCwKC0sY2dhYRELXnrpJZxwwgkoLy/HEUccgfvuuw+TJ0+G4zhUOk91+NBDD2HkyJEoLy/H3/72NwDAu+++iwsuuABdunRBx44dMX78ePz73/+m8vPKBPhq08MPPxyXXnoppk+fjpNPPhkdOnTAiBEj8NhjjwXyz5s3D2eccQYqKiowcOBA3H777chkMsrvvu666/DAAw/43+b959Eh+l6RunPDhg1wHAdPPPGEVvkennrqKYwcORIdO3bEiSeeiH/9619K2gFg5cqVuOiii9CxY0f07t0bN954I/bt2xdIN2PGDFx22WUYNGgQKioqcNRRR+Fb3/oWduzY4aeZPHkyfvSjHwEAhg0b5tPqfeO0adMwadIkDBgwAB06dMDIkSNx22234cCBA1q0WlhYqJFqaQIsLCzaPqZPn44rrrgCZ599NqZNm4ampibcfffd2LZtGzf9iy++iNmzZ+OXv/wl+vfvj759+2LWrFmYOHEiTjjhBDz66KMoLy/H1KlT8ZnPfAbPPvssrrzyylC0LVmyBP/93/+N2267Df369cMjjzyC66+/HkcddRTOPvtsAMDy5ctxwQUX4PDDD8cTTzyBjh07YurUqfj73/+uLP8Xv/gFDhw4gP/7v//D3Llz/ecDBgyQfu/27du16Ncp/9///jcWLFiAu+66C507d8b//M//4HOf+xxWrVqFI444Qlj2tm3bcM455yCdTmPq1Kno168fnnnmGa7N3tq1azFu3DjccMMN6NatGzZs2IB77rkHZ555JpYtW4Z0Oo0bbrgBu3btwp///Ge88MILPo3HHnssAGD16tWorKzELbfcgk6dOmHlypX4/e9/j/nz5+Ott97Sag8LCwsFXAsLC4uIOPXUU93Bgwe7DQ0N/rN9+/a5vXr1ctllBoDbrVs3d9euXdTzsWPHun379nX37dvnP2tqanJHjRrlDho0yM3lcq7ruu4dd9wRKNN1Xffxxx93Abjr16/3nw0dOtStqKhwN27c6D87dOiQ27NnT/db3/qW/+zKK690O3To4G7dupWqe8SIEYEyebj55pu5NMm+d+bMmS4Ad+bMmdTz9evXuwDcxx9/XLv8fv36uXv37vWfbd261U0kEu6UKVOkdP/kJz9xHcdxFy9eTD2fOHEilzYPuVzOzWQy7saNG10A7ksvveS/+8Mf/qDVZl4Zs2bNcgG4S5Yskaa3sLDQg1XFWlhYRMKBAwfwwQcf4PLLL0dZWZn/vHPnzvjMZz7DzXP++eejR48eVBnvv/8+vvCFL6Bz587+82QyiWuuuQaffvopVq1aFYq+0aNHY8iQIf7viooKHH300di4caP/bObMmbjgggvQr18/qu6wUkIW7PfGjfPOOw9dunTxf/fr1w99+/alvpGHmTNn4rjjjsOJJ55IPb/66qsDaWtra3HjjTdi8ODBSKVSSKfTGDp0KABgxYoVWnSuW7cOV199Nfr3749kMol0Oo1zzjnHqAwLCws5rCrWwsIiEnbv3g3XdSmmyAPvGUCrEcky2OcAMHDgQADAzp07Q9HXq1evwLPy8nLKgWHnzp3o379/IB3vWRjwvitO6HwjDzt37sSwYcMCz9nvzuVymDRpErZs2YJf/OIXOP7449GpUyfkcjmMHTtWyxlk//79OOuss1BRUYFf//rXOProo9GxY0ds2rQJV1xxhXUosbCICZaxs7CwiIQePXrAcRyuPd3WrVu5eVjnhx49eiCRSKCmpiaQdsuWLQCA3r17A8hL3ACgoaEB5eXlfjrSiN8UvXr14tIqot8UPGcP8jtIRPkOU+h+90cffYQlS5bgiSeewFe/+lX/+Zo1a7Treuutt7Blyxa8/fbbvpQOgA2LYmERM6wq1sLCIhI6deqEU045BS+++CIaGxv95/v379f2zOzUqRNOP/10vPDCC5TkJpfL4emnn8agQYNw9NFHA8h7ugLA0qVLqTJeeeWV0N9w3nnn4c0336SY02w2i2nTpmnl9xhME6mT6DtefvnlWMrXwXnnnYePP/4YS5YsoZ6zTiMeY0oy0gDwl7/8JVCmiFaTMiwsLMLDSuwsLCwi46677sIll1yCCy+8EN///veRzWbxhz/8AZ07d8auXbu0ypgyZQomTpyI8847Dz/84Q9RVlaGqVOn4qOPPsKzzz7rMwaVlZXo2bMnrr/+etx1111IpVJ44oknsGnTptD0//znP8fLL7+M888/H7/85S/RsWNHPPDAA9phOI4//ngAwO9//3tcfPHFSCaTOOGEEyibQxb9+/fHhAkTMGXKFPTo0QNDhw7Fm2++iRdeeCGW8nVwyy234LHHHsMll1yCX//6175X7MqVK6l0I0aMwJFHHonbbrsNruuiZ8+eeOWVVzBjxgwhrffddx+++tWvIp1O45hjjsH48ePRo0cP3HjjjbjjjjuQTqfxzDPPBJhKCwuLiGhh5w0LC4t2gn/+85/u8ccf75aVlblDhgxxf/e737nf+9733B49elDpALg333wzt4zZs2e7559/vtupUye3Q4cO7tixY91XXnklkG7+/Pnu+PHj3U6dOrmHHXaYe8cdd7iPPPII1yv2kksuCeQ/55xz3HPOOYd69t5777ljx451y8vL3f79+7s/+tGP3IcffljLw7OhocG94YYb3D59+riO41B5ZN9bU1PjfuELX3B79uzpduvWzf3KV77ifvDBBwGv2DDlDx061P3qV78qpdt1XXf58uXuxIkT3YqKCrdnz57u9ddf77700ksBr1gvXZcuXdwePXq4X/ziF93q6moXgHvHHXdQZd5+++3uwIED3UQiQZUzZ84cd9y4cW7Hjh3dPn36uDfccIP74YcfBr7XwsIiPBzXdd2WYSktLCzaMzKZDEaPHo3DDjsMr7/+ekuTY2FhYfEfAauKtbCwiAXXX389Jk6ciAEDBmDr1q146KGHsGLFCtx3330tTZqFhYXFfwwsY2dhYREL9u3bhx/+8IfYvn070uk0Tj75ZFRVVWHChAktTZqFhYXFfwysKtbCwsLCwsLCop2gzYU7mTp1KoYNG4aKigqMGTMGs2fP1sr33nvvIZVKYfTo0cUl0MLCwsLCwsKihdCmGLtp06bhlltuwc9+9jMsWrQIZ511Fi6++GJUV1dL89XV1eHaa6/FBRdcUCJKLSwsLCwsLCxKjzalij399NNx8skn48EHH/SfjRw5EpdffjmmTJkizPflL38Zw4cPRzKZxIsvvojFixeXgFoLCwsLCwsLi9KizThPNDY2YuHChbjtttuo55MmTcKcOXOE+R5//HGsXbsWTz/9NH79618r62loaKCu+Mnlcti1axd69erFvRbIwsLCwsLCwqKYcF0X+/btw8CBA5FIyJWtbYax27FjB7LZbOBS8X79+gnvc1y9ejVuu+02zJ49G6mU3qdOmTIFd955Z2R6LSwsLCwsLCzixKZNmzBo0CBpmjbD2HlgpWau63IladlsFldffTXuvPNO/45JHdx+++249dZb/d91dXUYMmQIPvnkE/Ts2TM84RYlRSaTwcyZM3HeeechnU63NDkWGrB91jZh+63twfZZ28O+ffswbNgwdOnSRZm2zTB2vXv3RjKZDEjnamtrA1I8IN8IH3zwARYtWoTvfOc7APJqVdd1kUql8Prrr+P8888P5CsvLw9cUg0APXv2RK9evWL6GotiI5PJoGPHjujVq5dduNoIbJ+1Tdh+a3uwfdb24PWTjklYm/GKLSsrw5gxYwKXTs+YMQPjx48PpO/atSuWLVuGxYsX+//deOONOOaYY7B48WKcfvrppSLdwsLCwsLCwqIkaDMSOwC49dZbcc011+CUU07BuHHj8PDDD6O6uho33ngjgLwadfPmzXjyySeRSCQwatQoKn/fvn1RUVEReG5hYWFhYWFh0R7Qphi7K6+8Ejt37sRdd92FmpoajBo1ClVVVRg6dCgAoKamRhnTzsLCwsLCwsKivaJNMXYAcNNNN+Gmm27ivnviiSekeSdPnozJkyfHT5SFhYWFhYWFRStAm7Gxs7CwsLCwsLCwkMMydhYWFhYWFhYW7QSWsbOwsLCwsLCwaCewjJ2FhYWFhYWFRTuBZewsLCwsLCwsLNoJLGNnYWFhYWFhYdFOYBk7CwsLCwsLC4t2AsvYWVhYWFhYWFi0E1jGzsLCwsLCwsKincAydhYWFhYWFhYW7QSWsbOwsLCwsLCwaCewjJ2FhYWFhYWFRTuBZewsLCwsLCwsLNoJLGNnYWFhYWFhYdFOYBk7CwsLCwsLC4t2AsvYWVhYWFhYWFi0E1jGzsLCwsLCwsKincAydhYWFhYWFhYW7QSWsbOwsLCwsLCwaCewjJ2FhYWFhYWFRTuBZewsLCwsLCwsLNoJLGNnYWFhYWFhYdFOYBk7CwsLCwsLC4t2AsvYWVhYWFhYWFi0E1jGzsLCwsLCwsKincAydhYWFhYWFhYW7QSWsbOwsLCwsLCwaCewjJ2FhYWFhYWFRTuBZewsLCwsLCwsLNoJLGNnYWFhYWFhYdFOYBk7CwsLCwsLC4t2AsvYWVhYWFhYWFi0E1jGzsLCwsLCwsKincAydhYWFhYWFhYW7QSWsbOwsLCwsLCwaCewjJ2FhYWFhYWFRTuBZewsLCwsLCwsLNoJ2hxjN3XqVAwbNgwVFRUYM2YMZs+eLUz77rvv4owzzkCvXr3QoUMHjBgxAn/6059KSK2FhYWFhYWFRemQamkCTDBt2jTccsstmDp1Ks444wz85S9/wcUXX4zly5djyJAhgfSdOnXCd77zHZxwwgno1KkT3n33XXzrW99Cp06d8M1vfrMFvsDCwsLCwsLConhoUxK7e+65B9dffz1uuOEGjBw5Evfeey8GDx6MBx98kJv+pJNOwlVXXYXjjjsOhx9+OL7yla/gwgsvlEr5LCwsLCwsLCzaKtoMY9fY2IiFCxdi0qRJ1PNJkyZhzpw5WmUsWrQIc+bMwTnnnFMMEi0sLCwsLCwsWhRtRhW7Y8cOZLNZ9OvXj3rer18/bN26VZp30KBB2L59O5qamjB58mTccMMNwrQNDQ1oaGjwf+/duxcAkMlkkMlkInyBRSnh9ZXts7YD22dtE7bf2h5sn7U9mPRVm2HsPDiOQ/12XTfwjMXs2bOxf/9+zJs3D7fddhuOOuooXHXVVdy0U6ZMwZ133hl4PnPmTHTs2DE84RYtghkzZrQ0CRaGsH3WNmH7re3B9lnbwcGDB7XTthnGrnfv3kgmkwHpXG1tbUCKx2LYsGEAgOOPPx7btm3D5MmThYzd7bffjltvvdX/vXfvXgwePBjnnXceevXqFfErLEqFTCaDGTNmYOLEiUin0y1NjoUGbJ+1Tdh+a3uwfdb24GkPddBmGLuysjKMGTMGM2bMwOc+9zn/+YwZM3DZZZdpl+O6LqVqZVFeXo7y8vLA83Q6bSdAG4Ttt7YH22dtE7bf2h5sn7UdmPRTm2HsAODWW2/FNddcg1NOOQXjxo3Dww8/jOrqatx4440A8tK2zZs348knnwQAPPDAAxgyZAhGjBgBIB/X7u6778Z3v/vdFvsGCwsLCwsLC4tioU0xdldeeSV27tyJu+66CzU1NRg1ahSqqqowdOhQAEBNTQ2qq6v99LlcDrfffjvWr1+PVCqFI488Er/73e/wrW99q6U+wcLCwsLCwsKiaGhTjB0A3HTTTbjpppu475544gnq93e/+10rnbOwsLCwsLD4j0GbiWNnYWFhYWFhYWEhh2XsLCwsLCwsLCzaCSxjZ2FhYWFhYWHRTmAZOwsLCwsLCwuLdgLL2FlYWFhYWFhYtBNYxs7CwsLCwsLCop3AMnYWFhYWFhYWFu0ElrGzsLCwsLCwsGgnsIydhYWFhYWFhUU7gWXsLCwsLCwsLCzaCSxjZ2FhYWFhYWHRTmAZOwsLCwsLCwuLdgLL2FlYWFhYWFhYtBNYxs7CwsLCwsLCop3AMnYWFhYWFhYWFu0ElrGzsLCwsLCwsGgnsIydhYWFhYWFhUU7gWXsLCwsLCwsLCzaCSxjZ2FhYWFhYWHRTmAZOwsLCwsLCwuLdgLL2FlYWFhYWFhYtBNYxs7CwsLCwsLCop3AMnYWFhYWFhYWFu0ElrGzsLCwsLCwsGgnsIydhYWFhYWFhUU7gWXsLCwsLCwsLCzaCSxjZ2FhYWFhYWHRTmAZOwsLCwsLCwuLdgLL2FlYWFhYWFhYtBNYxs7CwsLCwsLCop3AMnYWFhYWFhYWFu0ElrGzsLCwsLCwsGgnsIydhYWFhYWFhUU7gWXsLCwsLCwsLCzaCSxjZ2FhYWFhYWHRTmAZOwsLCwsLCwuLdgLL2FlYWFhYWFhYtBO0OcZu6tSpGDZsGCoqKjBmzBjMnj1bmPaFF17AxIkT0adPH3Tt2hXjxo3Da6+9VkJqLSwsLCwsLCxKhzbF2E2bNg233HILfvazn2HRokU466yzcPHFF6O6upqb/p133sHEiRNRVVWFhQsX4rzzzsNnPvMZLFq0qMSUW1hYWFhYWFgUH22Ksbvnnntw/fXX44YbbsDIkSNx7733YvDgwXjwwQe56e+99178+Mc/xqmnnorhw4fjt7/9LYYPH45XXnmlxJRbWFhYWFhYWBQfbYaxa2xsxMKFCzFp0iTq+aRJkzBnzhytMnK5HPbt24eePXsWg0QLCwsLCwsLixZFqqUJ0MWOHTuQzWbRr18/6nm/fv2wdetWrTL++Mc/4sCBA/jSl74kTNPQ0ICGhgb/9969ewEAmUwGmUwmBOUWLQGvr2yftR3YPmubsP3W9mD7rO3BpK/aDGPnwXEc6rfruoFnPDz77LOYPHkyXnrpJfTt21eYbsqUKbjzzjsDz2fOnImOHTuaE2zRopgxY0ZLk2BhCNtnbRO239oebJ+1HRw8eFA7bZth7Hr37o1kMhmQztXW1gakeCymTZuG66+/Hs899xwmTJggTXv77bfj1ltv9X/v3bsXgwcPxnnnnYdevXqF/wCLkiKTyWDGjBmYOHEi0ul0S5NjoQHbZ20Ttt/aHmyftT142kMdtBnGrqysDGPGjMGMGTPwuc99zn8+Y8YMXHbZZcJ8zz77LL7+9a/j2WefxSWXXKKsp7y8HOXl5YHn6XTaToA2CNtvbQ+2z9ombL+1Pdg+azsw6ac2w9gBwK233oprrrkGp5xyCsaNG4eHH34Y1dXVuPHGGwHkpW2bN2/Gk08+CSDP1F177bW47777MHbsWF/a16FDB3Tr1q3FvsPCwsLCwsLCohhoU4zdlVdeiZ07d+Kuu+5CTU0NRo0ahaqqKgwdOhQAUFNTQ8W0+8tf/oKmpibcfPPNuPnmm/3nX/3qV/HEE0+UmnwLCwsLCwsLi6KiTTF2AHDTTTfhpptu4r5jmbW33367+ARZWFhYWFhYWLQStJk4dhYWFhYWFhYWFnJYxq7EqM9ksaZ2n1GeXM4tEjV6yLZw/XFh14FG7NzfoE5oIYTr6o+FXQcai0jJfxZyORf76m3Msf90tJa1OJdzsaZ2v9F6EBUNTVk0ZXMlqy8K1m3fj0wL0moZuxJg5da9+PLDc7Fgwy5c/sB7mHDPO3h7Va1W3tp99Tj37rfx3WeLd7/t0k/34JZ/LMLqbUGGc8mmPThh8mt4/L31wvy5nItPd/Nj7MxZuwNn/v4tzNT83mIhk83h5F/NwJhfv2E04XYdaMTXn1iA6R/pBcHmoT6Txd/mbMCGHQdClyHDX2atxRVT38P+hib/2cHGJvy2agUWVe+OrZ43lm/Dyb+agZkr1X153xurcfKvZuDFRZtjq/8/GV959H0cP/l1bNwZfQw1NrX85jhzVS3ufOXjFt382gI+2lyHV5fVAACmLajGyF9Mx7urdxS1zoUbd2HaAv796x5+9e/lmHDPLDwwc03gXTbnxtqvuZyLX7z4EY75+XRMuGeWcd5SYfW2fbj9haV48O21OP+Ps/DNJz8oWd0sLGNXAtz09IeYt24XvvjQXKzcmmeedDe8n76wDNW7DuKVJVuKQlsmm8Nn//c9vLh4C6Yt2BR4/8PnluBAYxZ3vrJcWMaPn1+KM38/E899EMx/2/PL8OnuQ/ja4wuo50s/3YOPNtdF/wBN7CAkdQcbs9r5fvfqCry1shY3Pr0wdN1TZ67BHS9/jHPvfjt0GTJMeXUlPqzeg8feLTDf33t2MR5+Zx2+/sQCbp7qnQdxgGAEdXDDkx9g98EMvtZcZmNTDlf+ZS6mVK2g0v39/Wr86Y1PAAA/f/EjozqKjS17DmH26u0tTYYx5qzdCQB4fuGnkcq546WPcPTPXzXWGsSNrz2+AI+/twH/mC9nIP7Tcemf38W3n/kQSzbtwU+eX4bGbA5fefR97iE8Lnz+wbn4yfPL8NbKbcI0j7+3AQBw9+ufUM9d18XEP83CuClvcZm7/7dgE257fqlS8njLPxbh5mc+hOu6eHNlLZ6atxEAsGGnfpDet1fV4vjJr+FfS4uzd5L4aHMdJv7pHTw7fxN+P30lAGDmqpZbZyxjVwJs56j/kolg09dnsoETxofVe4zrW1S9W3vh3nOwoN7Zz9noGzVOXv/XvNnc/9bqwLtO5UH/nL31GXz2f9/DpX9+N7aTXS7nYm+zqmpN7T58+5lF2LS/8H5ffeHbkgn6phIZDTv2R1cnzlu/S5nmH/OrMWdNtJM42ZdvrMgvyrsPBtV3a2r34ew/zMS5d78N182rVMKcbGeuqsX763fhL++so57/9J/L/L/LU/EtMbmciz0Hg/1xqDGLyx94D/e9ERx/LMb/7i1c8+h8vPNJ22PuACCq/OFvc/Mb5J/fCkpaWgI1dfUtTYIUH22uQ+2+lqdx7fb91O8rHtS7Hz0KZixXS+aZpRQ5F1i3/QB27G/gSpd//PxS/GPBJrz2sVgDsrc+gxcXb8G/l9Vg+/4G6lBuguseX4ADjVl85+/htV3TFlRrMYY/mLY4dB3FgGXsSoAO6WTgWYqZEXsONmLkL6fjS3+ZSz03tVPaWlePz02dgwn3vKOVnmTcKjh0mqhtHASvdjt2QFf/b09C9FTz5gIATdnCVuW6Lmr35hfRPQcbjew3/vu5JThh8utYtXUfrn10Pt5YuR1/XFb4HpKxI8v956JPMfxnr2L6RzXccnk0/LZqBW56ZmFs9iUfb6nDbS8sw9WPvB+pnEOZoCSyV6eywLNZn+QZyO37GvDQrHWYcM8sTH7lY+P6dOx9WMbu99NX+qdvEnsONuL/ffApDnKEiI1NOfx7aQ0ue+A9jL5rBlZtpQ8tzy3chMWb9vhSQh28v36ndtrWhLhMmtSXMJYG7CGrNWFN7T5c+ud3cdpv3gy8e+3jrbjo3newcqv+bQBxglzPomLJpj34bdWKwMF+lca3pZL0/NZdE71D6PZ9Dbjn9VWUKQ+5JzhwYhvzpqipO4SfPL9MizFcXbtfmaaUsIxdCdCxjMPYJekF7a2VtXBd4IONBZuoMIyDqQ1OhmDcePUZMXacNbpnp0K07L31GWzadRB/eG2V/yxL1PmnGZ/gtN++iRv+tgCj75pBSX5U+GezavuhWWuxpVkK4BLbF6l2JL/yB9OWAABufPpDbrm8Hnj4nXWoWrYVizbt0aZPht0HClI1leTMdV38ZdZarp1NPYex4/VJtw6FPvnDa3m1wZNzg8yWCgmNO5q31NX7bb/s0zo8+PZa/IKjnv320x/iZy8tx9NrgkvSH15biZv//iGWNavu/x+j8g9jM8Y7hLQFuJFldnno9F0xUJ/JUhKQ1szYLd4kNhX51lMLsXLrPtzyj8Xc9899sAn/y9FgtEZc9sB7ePiddbj7tVXUHsCT9rNIM/2nK/j3xvHNf/8Q97+1Blf9dZ7/jjwwsgIQv56ci8ffW4+ln+7RqzAEyHVZtRefP0J8/3xLwDJ2JQBPEsYuaOzJB6BVa2WM5ONQY5YabK4bzmCVlNjxJmUDsWnmci6++eQH+M2/+fZ2vClIzoemrBuQQJKT+P5m9dAbK/IqgGfnB232VBCJ7cnTqAm/LEvLY6TCoEtFQV2962AjZizfhjrBojpzVS2mvLoSX3k0KN07pGE7uK8+g7pDxIIVgl4PokWXxX//vzzzvIujRvUwd11egvbx7uA8+Ots2nGHd1AyhSlf88bybTjjd29hwQa1Wr2YiMsW/IVFm3GwMT6pDwCs3X5AOidc18WNTy+kJCDJFmIwddC5vDDORBs7z3wlk83hR/+3FHe//gmqDWzCZLi1eQ4VE2tq9yNDSMvKOHsSi4DETnNF8ZpzfrOZyqZdh/x35J6QSDiBueq6Ll5cvBl3vrIcn/3f97TqCwOSDtWeITooHWhoMvJkfn/dzoDaPQwsY1cC8DYilrErYyR4M1fV4jeEUTo5yWrqDmHkL6dj2O1VqGr2mPrBtMUY86sZ2FJ3CDI0NuWoxZeUdvAmJfl+0aY9eH35tsBG68HhDG6yxGwuWEPc7vLb96kZu5iEHsjmXORyLm57finXO0wXaaJvf/vvFfjGkx/gy3+dh+cXfooJ98zCOmKir98h3ijqm7JYVL0bX6Dsb+g+OfU3b+BX/yow5lGanxzDssVrerM9TTYXjz0l76BUbNzw5AfYvOcQvhJRXd6a8LtXV8ZW1qo9Di66/z185s/vAsir987/49t4Y3nBAP9301fibcagPBFCYvf/Pthk7HTxh9dW4oqp7+H2F5bhdYl9FwnSPrhBIBVOc5ifLXvka3ApEGZddZz8GuKBFSbwwB7udKuVJSO1OHCDZbousKqIziMemmJYr4674zV8XtMecu32/bjy4Xm44I9mnr88WMbOALzJMnv1dvz6X8ul6qAOHMaOXRBSjDPF1x5f4DslsHW/8GHBo/amZ/IqxBcXb8He+ib8/tWCmpNH/xm/fwsnTH4dDc0TmJTY8SYl+d5UIrhp10E8SnhqNuVcNDAnetVp5uF31hqp2oQSO9LGzoCzk6Vsyrl4Y8U2/GPBJkq9bIoc2bfNKuUVNXvx388twZra/fjlS3n7N9d1pUb/hxqz+NzUOZQ6n0V9Jr4wBCQfrxob89fvwiLCEWjagmr8fvrKUBtQHIxdWDmRaIMvFeI8B3metiTW1O7D9/+xCGsMbYYW7Mi3qGdr9LUnFmDd9gO4gQj58JdZ6wL5eKrYqmU1uGLqe9wQSocas/jx/y3FbS8sE0q1eXhg5lp8WL0Hz86vxjef0vNw71hWYOx4kjkgyNjs2N+AFTUF27S4VOci7DrQGJh7++ozOPsPM/HzF/VNWYC81Ik89Osw3axJET0+w80ypTkKSmNKQUnsiOdPz9uIWYF1WEzzYk2TnU+2xsesWsZOE/e9tQZn/n4mdjOqxGsenY9H3l2PJ+duEObtkA56hrILWpKYILzNTleau3Wv2IPLdfMSrcZsDhubVQSkjZ2qDtWmwgrsLn+AFpNnc25gY8wqCv1t1Uo88m5wQxBB5MUaXhUrTpzNuiVRzXknxzdX1FILCrug69rYiTBfw3uXBDmGVYzdl/4yl/LE/Mnzy/Dg22t9tbsJTFWx767egfPufhvvryMYmVakAvyweje++th8LU/2YjMKV/5lHl5avAX/9cg8dWIJdkvU7iR4qtibnvkQH1bv8Q80JEgpysFMvKpkFiRpotBApCpyz8FGnPLrNyh73WIGFN6w4wBO/tUMX0oKAI/MXofjJ7+OTbsO4el5ZlLNhAM0ZMiDvpp2ViAhGp/Lt+ylx7ek7CaKoQqmc1034I1bDFB0NNO77NM6/PzFj/DVx+YzNEWvL86RYhk7TTwxpxqb9xzCY4JAvRslthRciV1AFVvoiibOYhDHgs6qRQE2nEm0Oti5tpNhgptyuYD0TUfavezT6PHuRCduD2EWiqZcDitq5Jtx3cGM8myZU6wKnoRq3jpawsLG4+N5xZqA9chWgdyUSduck4Z01y7jPU6Il1qBOt1DRdps2frKo+9j/Y4DuPLhArPSUmxd1bIazFhOxwe7YuoczPpkO274mzqgabE9BL05u20v3Qf1mSzeXLFNy44T0KdTJhXi3bRB2jLFyTTVHcwEbjUgv0HkhZomDuS8taCY8XH/3WyGs5KQ9Pz63ytEyQPI5goaAiAosVOtSwD9/fk8wTR76zOovH82FalBqoolClnGiXWac/k2bdMWVOP2F5bGFpQ4x5HYyQQnURHn3LaMnSFEiwmPGfPAM0Jl49ilFNKPWE4ERCHepM0oVLFUfgXjx7OxI/HAzDWUDQdJh7ReJskHG3bh5y8uM7rJgTQU59Uo8s6TkdeUc+mFsHkM5HIufvPv5bj8gfdw4l2v432JJGzb3nplTDUvXE4PJnQJa/wep5pVB+SQJ8eRjtG1h+U1wZAKX/7rfE7KAjqkk2hsKhwSVONOhVLdfrD7QCNueuZDfOPJD7jmBVs0YrrFaZNqUtbP/vkRrv/bB/jx80tjqx8AkpKu46nbSIp1TaBU/bttbz1OvOt1qS2Ujiq2V+dgaCGd9S0soo6FubUOfvJCQSrqOA61huhMi1QyQdtpc2ji2T3LSCfb7JpH5wdU8i5crsD9J88vw7PzN+H15UEbyjte+sj4IEBL7PL/ihzGinzeMoZl7Awh6kCRYfiBhibM4Aw01jaBFOmT0g9VvSrsrc/4UcrJce0N1EZKFRuvxI5F1bKteP1jWlqhM9lYhvK+N1fj6XnVRjc5UPa4nO8UMQcyZjabc2kHAtfF3+ZswBE/rcJfZ6/Xsq04/bdvBqK3s/Akdj0Zxu5Ag1pi51G3ZNMeLN+iH3PLdV3lxkGOF3px166G2/+bdsuNz10XGPOrGRg35U3kcm4k6ductTsw/Gev4pHZ+up+FrobBskc8OZaY1MO33t2kX9AWPrpHlz3+PxA3D4TTP+oBgs36qnYZXfRPv9h3t5XdANO2D6QhTvhTUmy3VgzjuqdB32PwqplNfivR+ahdl+90nv9reYr8pYENAOF8vcLJHa8aAYkiqmKjXqQ27ifbuAE4zyhI/laU7sfR//8Vfzx9byNMZkl7HmLbbMVzOHPdeXjjfT69/C3uRuNb6Dg9R0pYWajUrQmWMbOEKL+a+IwYwDwnb9/iL2cRYFc0HI5l7pijHvCDDluzv6fmZj4p3ew9NM9FJPiLZCNVIDgcHV40JnIrIQmjMRukcFtHM/M34Q1tfuo5uNK7EKsQk1Zl2LQm7Iu7njZPNCvCp7qkQyLAgTtfuoFarK6Qxlc9sB7qLx/trKuddv3Y/LLH2PY7VW48uF5chtD4p3KLkYEVRwzXv3b9tZjX0MTdh5oxMFMNtQG4uXxQrGYqLBIVC2rwQmTX8ObK8TXL/EgataXl2zx7TY/N3UO3l61HdcQoW1M5uia2v248ekP8fkH5+IH0xYH2pL8VbuvHsdPfl2/cAZhlw5vo/zVv5bjW099QI1pXr+Sn0AxeTkXZ/9hJi744ywcbGzCTc98iPfW7MRv/72Ce+Ah22JAtwr/byoUEFHXAUI6TjI8aco2OkhvMSV2KvMSFboxAsYwqlgPvv2sZhbpusIwVKw2zHXDSelFERNE4K1ppMROpqXj4am5G/Czfy4Tfju7bm7f1xCaYbSMnSEemrUW/1wUvK9R1Mmi++LIAfLyki1UNH6uKjbk0unFwntzRS218Pg2doSk5bmFn8pPNQoSdDyVWOeTMCdano2ViEGY/MoKTLjnHUZiF0wXThWbo1TqcbjH81Ceykvs2PY9wKhiRTZ2Ow2u5Jny6ko8MWcDgLwzhcymhNzgMop4iCKwNjos+Jtl4W8295RXV/i3l8igGquLN+3R8gy96ZkPcaAxi+s17ONIyOaz14/e3CBtDh95d70vHVFhE6HC+ueizQG7ORJvcZxYcjkXT8/bWNQ7nb0D1aPvrsdrH2+jQjxxVbGkOQkxEMir5kiGZ/fBDOUQ4IF04iJvBhKFKiEP56RUi3UeYFGkJQGA3nWPQJ6h+MWLHwWYhE4p+nciQUsBVY5tPOgyg7JUbBms0MSFGyrAtimTzYtjR+4T1K1JGuX94qWP8cz71RyPWroOIH9gPPU3b+Cn/wx317Zl7ELgB9OWoKGJjqBuOglIxo5V2fGkf7LN8kfP8YNXUqJiFNQp+fKCNnYA/OChn2zbh9tfKNjT6NhN6cw11ltOhwnQaVk1gyCXKIloD8ZQoqVUZLXFUrt4zjcs3QcZVazpCZIHlgmULaDk96rsbERQLdC8kmSl/2XWOnz7Gf4tIiRk1f7fwk9x+QPv4ZL7Z3Pvpg0L3b1I1Xp/fmsNfvTcEiq+Ibc+5rfsekLe0Kn6qAY/f/EjXEp4XcZ9U0Qi4VDjhQzoy+OZaIld4W/ylgSS2XIc/oGngYrfWcBmwgyAfE5GDyCdlsh1nLeutAYbu1+89DGemrcxEN6G7XOHkdiJipetc7pfq7Jdpn8HnVrCSOlNl0fed5LjX5exZrFT4/7xu5vDZz1rGK/Rg2XsQuLu11ZREdRZjyoVkhJGiTdgZJP4uYVBCWI+T+HvLXsO4WcE9++NWZ4Rd03dIVx07zvUzQ9lqURg0tbuq8dZ//OW/1tHPM7OlTCqWB54gUKFZZhI7JjErNQzIfAMjRMVzRI7tu1YiR0PjmOmJmMlELIuJfsurMROhk27DuLPnGuZyLngOEEGZqEkjp8O1u/IM0wNTTmsM3DQMYFsTOts2M8t/BTXPCp3MmHnY4CxI6XYnFHCs+1j7/6NiqTjBG4a8MCT2LHqVw/kgZEaHyiEAerTpdx/3tDEZ2C27avnPidbh/QM5hnYkzA58GdzLp54b70vIVXauBryFXuYuH9NTPGsKlbEwMniiuoym7JUbL3suuoiXBQDUx6bZChdF5i7difuIeyhvT1/f0MTPjawX2YdCP06zMiTwjJ2IfFPwiYOMJfWyK5j4knswnQ6mYdVgXpqDJ7at3ZvQ2Bz5knEnpq7kboKJsxZXq/dxMyVB5VEUaXKDmNjxy44umMgk83hgw27tAMve6pndtFkw53EAZbRlnuvFf6m7VH0ISq/sSmHzz84B/e+wWPsCn+HDVQqy0WWv5njyGGi2qbq1Bxjuhv2ZsUNBwGJHSN9pM46nH7gHZbivvUjmXAo5of0EOfa2BF/k/ONZFrJNKSnZ5fylK92peK1ETlEDgnk3CPnncrjVsbo7NzfgFeWbPGZqRcXbcbkV5b7ElLVcmIqDWQlX9kcz3lC7UzXIGBMtuw5FHDoEkHWLuz+x9Kdc12tucQm4X3PI7PXYeI9s1C7L2i+wa7nV/11nn/1IVBY/y+69x0j+z1v7M36ZDsVBzVOBwzL2IUEu6mbSmtkKo24wp2wqlgS3pjlRdLnVcW7XoZd5MOIx3WYoTdW1OKhWWulaUwkdrwahV6xrCqW+Duby9HqGk2p7R9eW4UvPDQXk1/Rc7QQjRX2Fo84EAggLeif/Q1NVPysDEcVS0pIRBBtHnWHMsJ4diyTHjXcSZCmwt88m6uvPl6QlLEHio+31OG+N1YrPTFloz4u9R3bLKxaWeXVx5tTIold2B5wHPEY4/Ur2Tbkhk8eXGnGv6CKrUgnUd58SKKYEyK9jkkBGWZIFS5KtiTcM+MTfPfZRfjCQ/kwK+w1WapxYDpK2D2KJ7GjoiQI+kV0+8r4372Fs/8ws0BfyHHMjgf2ABxaFcuUu31fA3797xVYXbs/EK0BUDuEeX3/qcKLn0V9Uxbb9zXgq4/NxxcfEsQOjbikBa9EsNACq3o1ldjJbIvC6u5Z6GwefCYymDOVSAQWLjb8xsadB+FqnqYKdeml+92rK3HjOUcC4E9qNnxMoB5FnSI+m03K2tiR0B0DD7+TD63x9/f17Ce8vpIxmSI4cKRtnEo41Hewi6j3TeyYOO/ut6lTamM2eNIfNbCr0HnIg4g2XsgCXh5RTCsVvDy8rOQizmPsPtpcULuUpxPUt19yf17a0pjN4kcXjhDWL9v0ihUhQ2Zjx6uSJ6U3ldipVGY51xUzdszvAw1NlDSTktiRqljma+p9xi7hM6b1lMSuAEpFSzwnu4tUxaru2patCZ60xhtPrBZHxdiZHgDYtZ5l7ByH3tdEpOtqGuTmBuJ3rIQuwEi6attcID9+qD5k3i/9dI//d+fyICtEBSjm0Bs2/mVDJseVEMYJK7ELicDpJ0b3J1HoFNMTEO0JymdCeJOUp47gGTL36Jimfu9vaMKfOKozGcJ4XvEZM33vSt4CLJSgyiR2WVfK6InAMsQqeFWYqEl1wTLE7DVNXp0/f5H2zmJVDxlO2Bw2CDcPos1JtmjqNPP/LfwU33t2kXAT8g4f3KKIh9sValcRo8OLGUi29MHGLO546SPM5dzXGpdKhlVTs+YYZC086YyJxE5EsSrOm+vKJHaFv7fW1eO4O17DVX8t3B5CzjfKfoyU2DkFxq5DWdLvrwZB3EXReCHXDFIVqwoXJevLTgwzwTJ2qmFgbjNWyNDQlMMhxkQ34TjUvBOtzbr1hh3F7HhgvZrzXrHm5bJrDVkPbwyqzEvC2lQ3NOWoA4pqvodZDyxjFxIsIydixsJAtKmZnuRldmUyiR3vNJF0HC0V2P1vGjJ2MYknVDZ05HsTxlDmPKHy3hKhNydCvQxeLSzd+id2/TZmPW29/nlGIV3knfR1LqAQUSb7NvKdKNkPn1uCl5dswbQPNvETSEAHXpa3ncn1ZuQQ+9+31uBvczdSjEqhfu0itesD5AcP3hueFLxcQ2JHbkQyW+J8WvEaQM7Jl5fkbZrXE84sZD5x6ImCQ0BFKukzprRkjmZ4SNo8kCQezOjb2MkOrmzLsExwHBI76uDZTKvrujjn7ncwfztdX8JhD2j88nUP41KJnWRNYscpa9MnulJMhaDjXuFv75vmrt2JaQvyax0d7iRIb1iJXX0mS7Wh9ydrQuDh1N+8IQzDI4Jl7EKCHSSmoSZkXLhowESR2LEqMT9AMeeEyrsPknenYxyCBZNvkqU1Od3ykoqES0H1J33KI1/rMvc6tmc8GsI099a99Vi9TRwWgx22bB26zGMjZWuUz6MTGkPUp7oCcBdyc5Q9AvXjH15bhbXb9/NVsQRJqsXb81hmoTJHWC/xto3jXuhHZq/Dfz3yPvVMtkRxnSc4k6JCwyuWHAuqMZBzXSGjoBo9lH2b4ODmOIX1rCKd9GNC6kjsRGUeEtjY8SBrc3KMuK4baCu184T8PZuGXJ/Ye7yBPLNEHk5FDLfumiBLJyuCrZfVIOnuGewcDAToJn57Euur/joPP3l+GRZv2kMzdpzyTRg7sq6Gphwl0eeVTT7bsb/RWGBibexiQpyqWJGINz6ZYGHjbOTUleFdpcLdqKJTZCKxy7n5uyW5E0HJ2MlPX7pesdSmn8sFwp/ooG+XCnUiAgUbO5f7XAVpXDeFFFB37eKpYnVO1aImk0kFjA4Dkne/+tdyZR4lY0dIsDbtOihJSatG5dJ0aTFa4N+kEZQ+53IuMrkcdyylU/oSOzIlbQIip9OFniqWB14AWR68Q3c66RQkdhm+LZ3I41Okis0IGEQPsmu52DZLU7fY5NThTjTmAdlGmZwnsRPQ4zjUPBaRrh3SRCqxE0MlsXMRTmL357fWoGNZCt8+N2+rLfLqB/Le8GTb8frRRBVLZl9Rs5eKT5dvz6BGjISpEMUydjEh4KKdzRkbK3sQS+zMaJKeiiSqWF5MvqQTNMKPQ2JnYmOXc10kQ7oLqWrhSSRV+bIh7Sy7VoSbdsVof5mqGTAL4cKWqVLDAfkF9Y3lQY802aZF3umptk9RkuBjzpodmPbBJmqEqRm7ggTr5r+rAyProFj3TrLFVu86iCN+WoWyZAI3nXekVhk6EjtRrDk+UXpesbwmEWlJyDHtEHkdxyG8Yvner5QGQ8CgimzseJCNY5I3ybouZZNa35RTMvg644TyIm6mVZQrmWDiUQoldspqm+sJN47Ze9d5sU/JpUXksMdbfX4/fSXB2JFMLF2J4wRtElmYxK4ly2cvJOC1Ekv7tA82oa6ujpOSD8vYxQR2cbr6r+9jPhGjhsXeQxnUZ7Jc42shY2c4UVQX2AP8hYenUmQZH9eVU6MbsZ+cw44j34jlon39DZ6XVCSxk8ZbCqmKNV3uPBrYFo9DshNQxYaUCvJs7ETMMoklm/bghieD13Hlci4q0gmuI88MghF0AaloRzZK2VxXM6pLQL1xk/N3aeASeTHCjnMWv3t1JV5ZsgUv3nyGUsUvKrcxm8OcNUEnDt4ypGNjx7NdktGk6xXLQpSPVcV6Y8BBITxNg9Arlv+cxCFBHDtTr1gSOZe+xaY+k1UejHTOkTRjV7Cx48GBQ61hor7TvjZMJrGTSVhV66hLM/3ZnKuMiiAohiqDhAOaweSZJ5lEr9BRS6uateqjrdr1WRu7mMCeHmVMHZBXlZx01wzuO6EqNkaJnU8vJ02Gs2IkOCpQWfmXPfCemkDQA17Xs5W3MKmahvf+z4Tdgth5gk8D0GxjZyKd4JRhkl5m7xcWQbsT+r3uNzVSKpz832GCPhfKiD8YLgudsDyq0A7lhI1d7876tpNhNz0WD81ai817DuGNFUGpZ5RyAb7ERscbUXSfKzctwqti6VsfiL/JMshwP07B5o/aaIk/hV6xRHpRgGKuKlYmsSNV8y5ALvv1mWwsAYopBxMvdJEgbd55Qh2g2HSd4xWjI3QQlougtJMH0fjxnGlkazcrseNdS2ekipUsIy7y+wh9IIkWyM4ydjEhjI2d6NL22FSxknfeaYSXJsPxBOSpAUWT03VdbNwptzfy6aAYO3la3kLjTU5lME/Kxi7/7x9nFK6H0ZEuAfQ3s33Os01UlaGXPo+gdM2oGGnZot+6qnJqzDZnCXOK9uvNudTl7CK4rv4tEix0qDNRxR5/WFdpWrLf5V6/GoQx6NdVJxi0+J3uPac6w8FEYue6el6xvBRNWb50LXBYaf7XgcMNc6PjFUv+fSgjCFDMoVHal8QAzEsuC2XVZ/h2j9plc9L4jJ0gXyLB2NgJhr7uulNoV/44eu1jvgRK5YjounI1veo2Gu/6ObnJgEMdSnh7dVhVLIufvvARJv7pHSE/EAZWFRsTwoY74Z1odWIp6UDn2hZeGh6TGoihBvEEV111RJVLfH9+spptePlJrl5s6AN6MLEoNIfMro3tc9Y2RIcWHfjOEwzdf3htFWr3Rgt0Gfw+9pvMTudAgd4wBs5kGboSO1k10n1VgzwTz7duHQpxHVXetjKEuXlC52o12frBu5icx5S9vGQLLj9pIM4f0U9cD+cQJYLUK9YB/vet1di06xCG9ekUeC+0saMkH4XfjlM4PIpC5oi8YsmqyGuzVFIb2fxxmHRkWXmJnWp7Vo8Tcn31vk00DlivWNE4NFXFipJ/66mF1O9MNod0MqFcc1gbOzZ9QfXO3092H8hgQLcOdLBrhY0d7yYZE1Ws7IDz/If5u96nG6haVbASu5hQU1ePOWt2GOfjqT3F6gCzsuUSO1eYRrxg8k/CLHSldSQdgFp1V2Bw5M94CBPH7pNt+6SGruyCosvcG8cjlCyQf5u70awwBVjatBk7sn2b/9UJdyKmQ5OxU3a8pshEgIxCFesK/lZBljaM84ReTDPxu3Wc8CsiNerXnwjaRMrqkY0hF+J548DB3a9/gmkfbMISZh6y5Yq+jbWx8+Y5SRKZ19QrNp9ffEjWdZ7IufT3NDRlNZhi+XuAZiiyKomdA00bO3W9QGGM647mbzTb2mqpYom5axrkfg9HYscb61R/cGx9TYQ5rqE9ZFRYxi5G8IyvVeCd+MTeXmaQjZOsK57kPBEzT7IjDGBpGMLEg4oP4E0O31TQSGIXBI+x++7fF3HKKeTO5Gi7CP1YhmY9abpARkHAQaOFJHbZnCu85YCqN0Kr6PCdKucJyp5MNQZ1iNIoh08HnyY6jVnBYZ1z2A1KKvV0XfGGxjgTsBDd5fmnNwomFqSNXV5i16yKpfqNZKjMVLHUp3Ce6Uu3XGrd/fyDc7FM4YyjU/YrS7b4f6vMhRzHYeJR5umqO5ihrvjT/SaPgeLa2HEevt0ca1XJ2DESO901ysPu5ltKSBLYIepAx8YuHoldMWAZuxYGTyIgmjjGJ3kZYyeR2PGYzZyrv4WanDxMnCe4Nj+abI+KJN4mv7defF8pkFe90jZ35kyQSYZihcHgVOVDP8p8UHqiE+5ERodudpkaUiqvi0EVK2KoeGVT/SchLMzJncwjUg+aMmphb4Vhc8nmBSupIqH0ihX0zQsfbhaU5/j9Qt0DSqRpFHjFkn8HJXb0vyRkvBQ5bnNusJ2+/4/gwZLE24p7mAHgzlcKsRpVamP2rlggz+ieeNfrOPHO15VetSyue3wBavfVG49nHRs7cq8QJhcMII9JpW3s6O92HIcal7yDhQljp9MGEf0lKFjGroXBGxzCE7dh2dJrWyQ2dlyaOL9FY9WETnLyqAZ2IVAvUZeuxI5SxQYT85hKVUjmwH3BmhPddKG7/601qN55MBZnCRVM1GiifN7fyYjOE6b1mr5/7eNtSoNl9c0CQYZWB3EHKKaYE2G4JDOEVQ0FglxLGArXFYc7Ieckz0uQ9ooVVOAU5rvjFMrJucDKrXsxf/0uRhWr9hjghb4QgT0Y5XIuPqzeHSgjm3MDDI2uM5YHkTOCX57PmPHfJx0nQMMO4q7kA800m9yk9e7qHQKJnTiPylZZtUbt2N8onbee5FLl5EOWwbN/M/OKNevLqDyeZexaGLxFWDQmjQV2ISV2PNsBXlgM4eZkQCclsVNePyTOr6pSqYrl1M3bTFgGJowqNsx++c2nPiiNxI5pHU8qoLKXI3PFEe7ERHUhd56Ql7P7oFwqK9ogfvHiR823A+jXRaurxeneW70D2/c1iBNwyy4U2CBgVk0ZtbCMHZuNZ0fsp4VeuBO+kxdf6kaVQdDDOk9cdO9sfOkvc6l7OEWBi6USOwkV7Ib+zPxqXDF1Dr7y6PuBwya77qYNJd6sMwKLQrgTfmttravH7NW0nThJE8/xRIV8rE/OfqJBpwgu6DJZev7w2ipc9r/vCZkjXgzXZZv34oa/FWxHHdDj8nVOEPWMxu0gBRq1ksUGy9i1MHhcv2hTM74rVvJOGsdOZGPncp5xoDPxvUChRnHsBG7z+X9Vi0EwDwltJkSDWY5QhBBrt+8vjY0dU8kTczZg7fb92o4tZBlRnCd0x/rOA2YMkCkyWZd72n5q3ka8tHgLtWDT/IsqJqP4+6Z/vBVn/c9bRnSSxQm99QwHUMg7zgNjSGZkHkkVqzHfHMchPtvhrjHVxFVwO/Y3YOHGfAxS0Zohdp4oPOvfNX9tIEvi39/PXyW1cONueuy4QRu4lMhVPySaFBK7FxYFVdgkTQXHEwPGLuty6xMVsaJmr4aNHWsfF0y/vGZv4Bmbnsz1zifbqViQjqOWyDXlxNLmQJ0ltrGz4U5aGEaqWGOJnThDIY6d/CTslxX4zZ+w+XrVtKWTDhqz9OahdJ7gMHH6EjtqmQ6812FC/vzmavTsXEaVQ0nsNHfCsHO8FKc+3qJdvfMgEgkAEg0ULY3K/4jmPKGXbsI978gldjG0mUjitGN/AyPV4Y+x+kwWP3xuCYb37cJ5ywfvxg0ZyLEh8qovlcTum0/RXrNStVg2J9yElapYzv3EPJASO4cjdWLpm7VqO8YM7Uk9I9MfauQ7T3gY1rsTjunXBdM/3spVxRYIo8tn1910BFMGHlRXivHAY25MhkWWuU9bhYvvm+1f+SUCK2MQjVPRulDwDhYT5jhiD2mfDk6fiaCjiqVtLqMtXJaxa2HwFmHhVTmGZcvSe2sZb/zwvKfyV4jRiUXl69CZP41mqQEfxnkilFesG5zUvKrZZ2RAY7+sUM4T5pM2791XfM6O9wmJhINUIgFArlJj/47iPGGysEk39dAUFCA6uR9ozFJ2UKLuf3Z+Nf61tAZATQzU8EGOw7gYu7DOE+zVarJ5MeXVlcJ3pASJN/ZpWyyx1E8V7iQQtoijzfD+dF0XBzN8VSxZinftK0s3ubaSfZbNuQFbxFQiXoldRoOhYUGFlGn+12QcZbIiVaxM6CAvP+fSB+pczvCbmtOqmC1WMsvCdc2ujFPhP9p5YurUqRg2bBgqKiowZswYzJ49W5i2pqYGV199NY455hgkEgnccsstpSNUE7zTrGisfOPJD/DxFrkLPAkdA1VemkbOzRMsTTzmqJBWPYjTIVSxvHZpyubwzifbsb9BfopmGQ9WXeVJ7BqbcvjCg3MwpWqFcqKpjHh1aGkLSCUcHMkJEEuBUsU2S+wiMnZxtFMsEjsBo3T/m6vxzicFz0S2rucXforH31vPteOLm0cnh57IAcBUtRpXXK2wDKIKOgcpnQDFbDkFVV1QItjQFJRAFTQJzfWgsJax354VHARcNygZTqfiltiJbxsSgb4yLZ/TpD+bBBI72dBSxYdzXYYpdvnaI5G3vMfQyT7DgYODCsmsC30Vq06T0fa60dCmGLtp06bhlltuwc9+9jMsWrQIZ511Fi6++GJUV1dz0zc0NKBPnz742c9+hhNPPLHE1OqBL+rmd+vCjbvx+QfnxFJvU87Fpl0HMZ3jScWV2BkYwOqM9bJmNYPRlWKc2fHnt9bg2sfma8U+IsGqujwbsukfb8UHG3fjL++skxOD4MlRNxJ5KMmbxu0axULCcdChTB4smBfwNYqNXbGYgTDQDWtA96uD/35uCe58ZTlqODexxP11lPNEXKrY2Pogejm8EnS8Ysm7BxzCxk5mo8U3Rck/k0lxXIKz40kGgzSTTF7QXisds8SuEAlBPw9PYmeSP+88EYSsCPUNPozEzvAQ6E1n6XxwNCV2mp6xpV7P2hRjd8899+D666/HDTfcgJEjR+Lee+/F4MGD8eCDD3LTH3744bjvvvtw7bXXolu3biWhcdOug1ghMdxkwds0ZEyFie2NStx97t1vc9/xvWI5E1pYvHoQlzUHnw1eKSYGbx4+O5/P1Msocl2x/QTpUah3TVMBvDt2eQgzxx3EG5ncBMmEo1zMeV5q0VSx0V3+Afkc0IU2wy54foBz8i+GWj2TzeGDDbtwQCC91g+gnUdcBt9x7Gm8jVHfxq5ZgkyGOyHKY9dg7g0NzX/zpDjsGHNQONSwzHFOILHLuUGv2Ch3LfMg804W5uG0sbnzhJnITjVeci7DFOckQa45kGmrSIjmkQcX+jZ2eo4+WkVpoc3Y2DU2NmLhwoW47bbbqOeTJk3CnDnxSLGAvJSvoaHgabd3rz6TBgBn/c9Mo/SHGhq17xj1kM3qxVHKCCKkA0BjU1Y42Bo5TE8u5yLTVCivsTGDpiy//IzC6BQgVZ9ZZDJ5VZWKD2jMZJDJZKhlVNvGgWjjTCaD/YfYxTyHTCZDfaOKQc3l6EWrvlEeOsOr27S/AS94aHyXRJvAzWWVNGezOb8fC6qpkG6VABozTbEwP6IgtiY41BC8R1VVF/ntDucz4pOG5ZHJNOHX//oYf5tbjb5dyrlpTMdPk+Q6Na+v99U34aXFn+KQZA/MNM/bKOD1Y6apyS83Jxhr+TAi2eY0rt8vGaIt2PWqsblcci1oyubXqb0H83tDKlGI+ZZpzCDh5vz0+WHrUmX530ExdgWaGxozgXXX5GCk077+GmfQF+SalslkkEnJ9xUWDZkmbnqZo1k2p4gtmclQY7mhMYNGztorYpQyzXtORrB/AUAum1VK7LLZLOob9daGBo29gVxj3YjrQ5th7Hbs2IFsNot+/ejLp/v164etW+O7PHfKlCm48847YytPhXnzP8DGOgcmwtNVq1YBUN+j+eabb0LUxWvXrRfWuX3nLrDykoOHDuGDDxb69b722mtYusPh0rHwww8Dz4d1cbF+X6HM+gP7ATj46OOPUbXrIwDAoUPJQL0kZr79Nvp2ABozhXS6J6ba2u3wvved2bORPwyniPe1qKqqwpJthW86ePCglJ5ttbXI5Bw/zfLVa6Hqx6qqKmzZklCmY5HNZrFy5Uro9HvcmDd3DnbtkvfNmjVrUZVZDQBoaMynXbl8OcLSu3TpUuzenZDWqYN1a9chqmLizZmzoLNU1m6v9evatm2b/3dNzZYADXV1dYhHJpnH4iVL8PSafFvXCmLg1W7fEaBDhtVrxeO5qqoKAPDGZgevVCel5d761Hv41sgcomw3tTt2gm2vdRs2oqpqPQCgupo/p7Zs3oyDOwAggY0bNiAvgErgk08+gTc2t9RspfKu31CNl/+1AfcsK4z5tevWo6pqLTbuB4AU0k4OTc3vpr/2GtIJYHVdfu04cGA/tny6D0ACK1auRNW+FX7ZB+oLZe7eXRgDs955B1u20t9wYN/ewDeL8O9/V0HVvnV76lBVVYUDGfhpD+voYvNBcR1z358Pr51mzJiBjilg6S7+us/Dqk/WIL3jkwBta9asgWjMbNxYLXwHAO+8Mxtr9hZomDV7NlZ1KHyTh6amJvDa75PmtWrFZvF3LFiwAHX75evPJ6vX4I264LdxaZ49W5lu547C/Nx/4IC0bhXalCoWCKrrXNdVqvBMcPvtt6Ours7/b9OmTbGVzcMJo0/C0KFDjfKMOOYYrXTnnne+8N3gIeI6u3QNqq0rKipwypgx/u9JF07CqOOP5+Y/afRJgWdnj6Lr69UjX8eIESNRWVmJyspKdOkkN9A/6+xzUFlZiWTSfIPo1buP//eZZ56F08adSb3v3acPKisrcdyoUf6zTh3l9PTq3Qc9evbwf/c/bIiSjsrKSgwYMECXbB+pZBJHH63X73Fj3Ljx6N6jhzTNsCOO8PsxmUoDAI4/fpQ0jwzHjhqF7j26h85foGtY5DLGjj9TnQj0GOvTt6//96DDDguk7dqta2S6SBx/wgnKNN179FSmIfHWFvH24PV1pstAZTmr6hJoHBDNxpk3/g4bNNinY9DgQdx8gwYdhiOPzIfPGDbscAw7PL8OHXXUcD9Nrz59qTwDBw3C9h7HUgzPsGHDUFlZiZNPHQsA6Nqpwn934YUXorKyEmPHng4A6NK5M4YOGQwAGD78GJ/GyspKpNOFcEmkedCZZ55FjR8A6N1TPudIXHTxxco03bp3Q2VlJSZMnOA/O/tYfrt5OOnkwpo/YcJEVFZWYvRJJ2vTNXTYMIwdOy7wfOUh8do6eIh8HT3zrLNw7HHH+b/POONMXHjhhYF06RR/nzi8uS9l6+lpp52KjII9Ouqoo3D2OedK03gYO/4MZZreRP93UuyFKrQZiV3v3r2RTCYD0rna2tqAFC8KysvLUV7OV2VEwQUj+uLNlbWB566TQMLQSDaR1DstJQUDGwByktMATwPjMuWlUmkkEnw6ePSlmWdlqebfTgLpdJ4RUHlRJpNJpNPpULZmJPOfTCWRZT+ymQ6H+CYVPY7jUOWqLowHkP/WUAcRR7vf44ZOvYlEoR89lKfDLy+Ok4gUB8+D6dziwXX0ynh3zc5CvUSeJDfQbLz2U6K5SMKNsU6vr4/q2wX4OBiVn0Xt/oiqWM7UyrqOT4cj6CMnkYDTPAaSiSQcTy9OpGfXwpzrYHXtQeqZ07w+ZNx82o5lKQDNatlUGul00p8njuMg6f3NzAtKw0BUm0imAt/or5EakK317DekUoWKlEGQiXZKpVJIp8XrPg85OFzaqncFHYpIOmVIJJPUvHYSSaSYtUeK5naQrmtOQhmgOJFIUPuFvEqdNTS++dlmJHZlZWUYM2YMZsyYQT2fMWMGxo8f30JU6ePi4/lSmsamXKwSRxIyOx6ZzZTo5onAtWICGzQe48V6SHrhTkgDbZUXpfc54e7SpI2AWRpd1/X/86DqFdYrVvcOyVBOsU5xDO51kBV4tpEg3/tXikVYqFbX7seH1XtC5/cQR5NFLYI3vePuSp3yiuGZVyqHHt5apmOrmo//2Pw3EaCYXHdYe6+mnBtYA70Z4Dk4lPEYIqIe77U03AlRBc95Ip3S3561+sH1nEJI5lI+R8k4jd5fps4T5vak8vSsI58w3Ing2/wrxSR0HWpUjy3ePiJCqb1i24zEDgBuvfVWXHPNNTjllFMwbtw4PPzww6iursaNN94IIK9G3bx5M5588kk/z+LFiwEA+/fvx/bt27F48WKUlZXh2GOPLSntoumTEXkNxQDZpdCyWEF6N0+YbU7sacRbtKg1RsFK5XgLkyaCMefo32tr9+PU37yJjoqwHrIyVRfKi/LpwAmZLw7kXDUzTd3A0PxnlLtin5y7MXReEi0VNYWslid5jJsh0vH+LQYTplti1KMrz0NXK9yJU2gbKkAxkTcYxy4Hlmf0yvcYPjLGnFe+V4oDxx/7wQDFQUYJ4Ic7MXGKNelaMqmoiq4VKeytb6IN+psrMb8r1gxaPCrxd05wH60IhbtixWlUMezyNMTrFUuXHQ1tirG78sorsXPnTtx1112oqanBqFGjUFVV5duo1dTUBGLanXRSwd5r4cKF+Pvf/46hQ4diw4YNpSRd7KETg9eeCL/+9wrhO5nHD+8CcpcTK0g0+HgTk93k/Th2VLgTIUkACgtKKIldgLGjH2ypqw9m0qCHLEVXYhd2g20xJoUb64ZNU/g7DoldXIiDmQlTBLmhh20GMriuCjpjQxX41QQ79zegV+dybfqiKiV4yyQdY41PiJN/6dPgkUHmDcSxy4rvAPUZO0Ji57rA/oYm/Ncj7xfq8QIUMw2Uo5hRQnrn0tIxguwAEg4/YLwKGU4cO97YvPm8I/FM8522VLgTg7o8NGXNrhTTKZ/VHokOnqIhl9VgUHUO6a6rP6dsHDsFbrrpJmzYsAENDQ1YuHAhzj77bP/dE088gbfffptKT6rYvP9KzdQBcsauWKpYGXiBiT3wbnFg54Bss+dNmIDEzlPFGgz4MHGU/LwKVSwPql4JI7HjMcg6yF9m3jKcXdZ1tWJLefD+jNNmJCx4wbbNEWa8FRDWVtAkn+vqH4ziwMQ/vZOvt0Rjkqc20755wv+7YBNLZuXdPMHGLvQYiYxAFfv4u+up396hhmVIRVLGvMSOH0+PRVgJ8PKavbj9hWXUM97eQ0oc6Zsn9Ovy0GQoTQPUY4qtP5sTM+Lc/BpXqzVoxIt1ObSIYBoTMupUbXOMXVuFSM3YmM21mO2UCXjSuigSO89o1+TbDzZm8cDMNSElKMTf0FsIlAGTQavRdRi7nFr4Ja6vhYZJzlUvtjTjnP87SoDiuBCnlMoEtBlTsB10+tKk9XKuq2QETQMUy7DrQD5+l77ELtpY4KpiSa5JQoc3Hh0UmF/qSjENGzuv6bznZYT9mwtgzyHaOcQb+p4w4Tf/Xo6n5m5gyizQsL++KTBWje5L1kz37PxqLUbL6y8qCHRzPrMrxfj2bzIoJXYIMsUX3fuOdvk6qlidYM6uqz+nTGOXRj0wtSlVbFuGOFhi62fqgKCjACCegLzHrK1xmnOlmAr3vvEJ5qzdqU7Io8ml/44jqn6e4SlARxWbX6zN63ZC5YoHvL5nQS+0+X/j8GqNijhUILxvv2z0QLy0eItW/iiqWF24zfXIRmDcQZGB0jn0cG+eENirkSCdJ8irvmSq2GzODXhEehstXxXropHwsnccx5dWZ3Mulnxah7/OpiV6LM3XPjYfQ3p2pN6LeAHeuDCSxjYndQR+0qTzRz3nsFp0VazqvUtLAQ81ZlFjYEpTYOzENensy7oCgnyd6jRxStStxK6FYWpj11J2SzymTrSov7UyGP6AVcuV+apYfRoWRfCSpCRK0Nvk1KpYugzeIhjME9JWrgW9YvNX9uin9+hsDTZ2sTB2nGcd0nInGzIP1ytWR2piILPTiecZ1xVhdL2xF8kFrx91r2kq8HWOz2STbcGuwZlsjmLUANJ5Iv9HmvFsYK8oJO+K3V/PN8Rn53P1rnyIlaP6dg7QSH0TZ1yYXPKiajXSyWTKqysDGU0YkEzWXBWrAqv12HVQ7/YHDwUbO3EaLRMOV3990ZHYxWI10gwrsSsRRIuuKZfeUnuly5E0iSivWha032NVsd6J1+T7o5xoaImdHqOyuna/gh76t54qNpwXdEt7xapoJvvGa5dWoYotksSug8J7mnae4NlEaVRs6BWpau5iGHCXakgqJXYiJohwQHEcvlcsX2LHhjvJo6CKTVLvGkiJHQrrXc51hZJX0ZTy+lF4+IwosfPbAwKpsONwx6xXg8kwyubid55gj0WeWQALofOEZ2MnGb2qGHb5/CaMnUYacg2NyORZiV2JENcW11Lqrb31TXj1I4Jhc80YDVEcOxP1UBTGhs0aj4qO8YrVlNiFrbmlnCdMVLEUQ9MKGLtieaNVKCR2JMLOWZNcroaNXUvGsYvuFSuX2MmoIMOd+LZjRF5vE/dobOI6TzSnbfJUsYzELkOqYgtjX8rYCej11cVFsLHLpyU4Ow4cALy43uGdJ8ygtOd1aRp2Cxg7EQphs8RpWIktnw79cCe6EkAPm/eIAzjrwDJ2JYLp5BahJaUgpE2RqYCd3XS8OFAmixe72JqAirOGmMJgBOrQyWOm1vTgOE7LSew0PNtc5AORkjRGiWMXF+LwiuVJg8oNgsfyAxTrSQR0kXPVDGTcjF0Y+6mwUMWxE8NhJHb5v3kSu3Si4KkfNJHJp/FCkpQx4U5IVSxZTzYnZrhFaxDPc5f+Iv2yeCAldiLw5q63BpipYnPGa62p88ROkcRO0O6eQ4hMqNCY1TSr0ZxT3//HYmUaa2PXBuHAwX1fHh14btqXrUEK4sFEpchK7Mo4ErtibhJk0a4bzyaXcw3FltBTa8rytgR0AhR/uHEPTrzzdTzz/kb/WQy3eUVGHGEieZ9eZsLY8WyidOo1lNio+Oi4GbuDmgG54wA33AknFAcLsk2c5v8BzM0TzWWnkgVpHms8X7CxC3rFwqVVsQCjihV8k0oVK1MvswjrQcsNd+LwDwm+xM5Uy2I47FR252z9YSV2ss/QktghXk/zOG1gW8HS+58BxwEuG30YPncSfSG4qaC6NRikAyEYUnKBdQoLCsVwFVHVSNPrxnI6CiMMClsvGUG/1Lj1/y1WLnTLa/ZiX0MTfvHSx/6zVCvg7IrlcMK9UoqqV1GABlmmDiuqlSFu54mDDVnt9jVxBOGBR7uOKvZQY4FGSmJHZNixv/nOV9+TNccJd9IssfNVsXT/k45TDgpesbmcuX01z3OXBLctw2gBwJfakfTzqjAZlznXxdeeWGBEl+oAkpfYFdKIJXby8mVrsZ4q1jyMiQxxnrtafuX9D4HD/OvDsDNbg3rLg5mNHXEpOvENtFNDHFTxwV55FZe3pGkpbi4cc+d4FSK6vZIpGppyvseeCVT3i5cCxbp5QqWKJZlwHg2xS+xctTQ/bondgcamkkmRsxxjdh1pyT8XbfaDsZNhSHhSJ49Za8q6Qq9Yr04q3Alc2nnCoe3kRN2idJ7QkEJ6COO1LoLjCFSxvqRLv7IFG3brE9YMleMCqyjZbewV65UjU8XqSOzCmdUAwCWcu+PjPIS2gqX3PwOOgLMz7cqWuKWChzxTY6KKJf8unDlVG2BccJm/Y3OeMCwmH9Q4XH3+VV2tZAyo0Bri2MUxonjjPJ1MSBls1gubhc5YN5WMqMZF3HHsDjZkSyZF5jFxlMRO0p7b9uYlcqQXKG/++4wdz3mi+d9GXoBil+MV2/w67zzB7xcRzTLm0yufhZGjhXdABJ9JFD0vOEhpVxUKKikYa/Grc0sEiZwvsROnadSJY+eG37MO790xoH2zNnZtEvFscq1BCgKYMzXkJp9MOP7CQW2AMdHGAysZ9CZRFN4jzDwMe/ME6TzRmuwsZWgNqthYeBlOGalkQspIlWpck3WoDn1x2gMB+YvSdcdy1E2LH+6EsLHTKIOVpLFIEfdXq7xiy3Tj2OXi94rl9fMXHpwjKE0CR6wil5n8FPMADqjHKSuxE8f7E5Wf70OpKlbTODfOpojz2viWX3n/Q+DNRXYimYpfW5O0xmSfIBm7vG1HPHYiumAlC94kSkdgPnKuefDNMHkA+uaJUvB1Xcqjh7hsBXxd0WzsUgm+HRIPXFVszGTlJCo/GR1RcLAxqz2So/YDb6M1vS6ODFAsVcVyYq95c5avimWkRkQcuJwrZjDUqlj97+PevKCo1wHwtfFDAu9FzhMeihHomoSqX12XXs/FjjMC28bmrpLtXw1FvPcbEDhUWYld24Pp5BahtUhrzFWxBbrJRYNVkRYLrGrMW5yiOKPoxHfj0REu3EnhG0rB3P/6c6Mil9E6JHYxqNw5z1JJR8pI0SYG8vdxwHXV0medoKsmaDQId1IMXoCS7GiUr5TYEdeABdD8iK+KdQOqWPKGC1PnCYeQ9om+IwrIsderczmuPp1m7hzH4a6LpVPFKhg7xpxFxBCJnhf6XlyPzo1QrqSOMIizXVt+5f0PgTdZ2Ulp2petxSsWMHWeoOIOcFWxRbWxY/aAOC6qD0Otmz9uhoLXPqVg7juXpzDx2H6RymgNZgNxOK3xhmUq4eirYnl8QsxDXSdAcdzI5vRvUSmGkwXtFauugGwdHvOQImzsWKi8YgOqWD9mCV/Cnkw4QoqTKlWsIJ8u/IDMkvJ4Xt9+HLsie8yoYk+yS6ho3xBR6XvFSqrRcp6I0Az5gzqjRbISu7aH2CR2rUQVa0o3ydjRbvZqkXocoCSDbmFyJ5MRGDvXnOacq7cJBcGXeBYLZGiIsGgNY7VYh4VkIqHNYPOYn/gZu9K3d8ZAYleMftCJY0eClNjx0nu3SfA8cL0nHtNXxqpiGa/Ywjs+w510HGWcujjvDiXhM06eeRBDnuMUAsiT8Mgttie0SmLHxg8VpRaNiUIcO3E9enHswjvCnXlUbyFdccDeFVsiFGzsoqG1COzyg1p/INJx7By+11VR49jRp3tv8YiiLgwzEaO4yHvfUAqpbd4eKVo9rUG6HMdayfeK5aureCi2sXm+jtKHwWkyuOC9GLaOpp7tjlNQn8u8YjMcjsp3nmhmJknGhz3gkQdX0WcnE+KbZArMp1xVGxZNAYldsDy+xC6PFneeAAIHdR5EdPo3T0iq0Y1jZ7pnjR7cHb+49FiMGdoj8C5OSaiV2JUIjuB01FYDFANmmybJJJCfQKlii3RCZeuBS4QOiTADwmhVw948kQ9QnEepJDNhVL4VaSJeYSsYq3FsQvvrm6jfFekEzjiqt1wVS9HAeR/z5ujCLXl7Z3P6EotiSHlIBkCXDm9M89ReacIrloULYP2OA5i9ekdzWvHC4TgFWxOR7WMy4YgDFEtozJcvrFoLKsbJgcP9vjBx7MJA6RTj0jQI6VEwfNI4dpo3T5juWX27lHOZOsCqYtskRG7lbVUVC0OmhnWecCQqkWKAZKAbsznU7vWizUf0ijX8gFyIS7HJ+oAS2a4pPONE6JBO+n+3BsYujuH17Wc+pH6/dPOZzXHsNCV2AkYhTsi8L4uFTC6nzbAVRRVramPnyB0TfIkdTxXrunhk9rpAWlHdDvGOt/aTBzUWygDFgny68FTYvsSOq4ptSYmd4koxl3We4KcTUZnNudiy55CUkdK1sTNtCWkYmRgFG1YVWyr4qti2r97yYCSxI23sGBuUQnnFVMUW/r7u8cIVN6mINnalyucQ+UpiY4dwav/yVBJABkDrCM1TjE3Iaxcpg01Uy9tAYierBZwnTFSxG3ea31yigue8octgk+FOZF6xPLjIe5D6v1234KnOFOWAdg4TMX4qVazYKzZaP6u8ox0A5ZLBXWwbO604dtRvfnr2+W0Xj8DvXl2J1bX7Mf53b0nr0JHYwdAcCRBHhADivRnGSuxKBLHzRNtUxebXM33a6U1eZGNXPIjKjtKeYRjRMFI+oIVUsSHq8ZqTlI60JIqxCXmHFBnjSjKUfNVe3KrYFrCxy+mLLP69rIb6fUSfTrHQ4LWtqfMEj2lKyTh1F+jftcL/uetARrimOw59gDe1AZMxn0AMErscI7Fjy3f4quaC80TLqmJd0G0qSs0+P6pPZ20aiiWxk8HePNEGEVe4k9aiijX1CKVVsXQ5Hoob7oRfdpRwJ2GYBoO9kIKDghddSZwnIo6zsBK/uFGM0AzeHNT3itV7FgW5FpHY5UJvbHHR6kl3dOggx6TMxo6HnOtSeSqP70+8E9cppUukavXCnQgYnMg2dl65/iEsWCDPK9YjuNjmM8o4di4tKRbtG+xzE+2MjsQuF4Kza5CUaxm7NgiRPQMQ3latpWFCd+BKseYWoUXq8dDFg6jsKDZ2Ydzdw9wvCzABikviFRvW6zcP0o6yJVEMT+uCKlbXeaL4NnbFCndy6uF8Q28gz1SF3YziGsIm6itSksazZ0pK1oL8QTZfV+Xx/dG9Y5k/vtkYdg7oKxPDSuz2NTRx30dFhrGxYyHyiPcldi0cxy7HqL9F5LDNa7Ju6nxiGK/YTbvEJglxXvlnGbsSQXhfoGFftga7JaB5QBsQH3SeaC5HQ6QeB0RlR7GxCxOTrqEpp70ZsuuQl61UQyDMnu1dbRRHHLw4UAxPa19iJw1QLFfFbt/XECtNxQp3IvvGpmz4OF6xSeyyBqpYguHizUHZUkCGSGIPLIfY66ccfpzOYJl8qBmQaG2n9Ip1+P3j5Sr6lWJKBodZdUWMHfM77gMxqxLWwapt+4Tv4mSYrfNEieAILBpcuEgYTNRWcEuTD5NhSK4TiQR/aSquxI5feDQbO/M8F983W5vhSTiFkAgOCstZKZh7mdeeXv7WIbErivNEwmPsxGloiV3sJHDqK44qVnbwacq1BlWsx7mrKaGuFON0iky17rqFfvTmn5e6PkOfHnScJwDJlWKK/SBq06kkdqI6PHKLrYrVuiuWIEJ4uGYex33FYRgbu0nEbT5sO8a5TljGrkSQSexcg4naVm3syDWT9gwiJmgxbewEzyNdKRZSrao7gfPtRNqS5P8tVYDiKP2RcEpvzM9DMYaUjiqWRCkCFLtucQ59svUmkw3nCATER6uZKtbx6+VJnVRxCT2JCukgBADfffbDQHod5wnRc9W8iTqt/DZjvqNQv0AV27wWtXS4E1ZSJlTFMqt+/BI7M1OE//nCCZgwUnxNo+q7TWAZuxJBZGNnOkVaDWMHUzUkYWNH3jxRKlVsEWzscm4x78po3vyatTyO4xCq2NKMgSjrt+nNFV3KU0WxKSpOuBO1KpZEnGEMRCjWXbGyMrM5/SvFWMQldfadJ7RUsXKvWKnNpCu+q3nTrkN0PcRrxhxM+VxFB1t+GLASMZ6EkEdCqbxiRfxNMuEg22zXSUvE+fSwj6Mc4vkVmK2RXzplsPR9nMtEK1LstXNIxlTrYNXMYTKoycWINGImiyiuxI5fdqQ4dqFz6oHdVH1VbAlmbV4VG01iZ7KO3nPl6NB1yVAMeyDvs1SMgIfSXSkW/0oi+8aMQRw7FnHR6oc70aqT8Djl9ImcpIJXrDcvRSpThzCyW7V1H56au5FfotB5QsHYRdwxMjmV84SchmKfU3hXugGF9YTVFuk6p0SV2AVsnhHvHmCvFGuD8CYjO7RM9fTFlRHpwzWUVpHfnUzw49gVc8GQnQLDlxleFaWDgFTDFTwvAhxElNgJ1DkiFItZXbf9QHEKhr7ErmSq2FI7T0SR2MVEbEYj3piHPMOS/5u/HjjCNswRzIQ//wRpHcJ5YvOeQ3j+w0+56UKrYqPa2DWpb57gMd6l8ooVt0tBGKCz+7Apoo45Nr9rao+kgL1SrA3CXwsCY8usM0uwR2jDTGJX+HDKxo40gi3ix4k210jhTorcF+xYEamCigXe9+kujqabT2sxMTCB1Nie+LuYdyD7dRRJFStjuE3uig2UGxOtXvU6a4fjFMIs8dYDkTeoV74nHdSZfzoSSXG4Ezpv14p4LabUd8UKVLElsrEToSCx0xt3bJqo84PtUxOJnU7VcTarZexKBFG/msdBi0xKLCC9vcj7QUUQO0+A+3fcEC1GUSRFcYviWZAbSCJRqKskTJBAFWvi0WtCZ5ti7DznCRnJZLiTEk3aUkvsMtnwcezi6m6PodNVxfoBijnMjUwF6RJ5fOcJST2qz3Mgppntx2+dcyTzPqIqttnGzpfYsbSJnCd8G7tI1YeGRxPrFaufP1r97GHERGBX6tVN6yiwdOlS44KPPfZYpFLWN8ODf/MEG+7ElLELwUoc1r0DNu+hDXwvPK4fXvt4m3FZDDEA9CYM+d2JBCFWLxFnJ1qMojpPFJNmciHJe6kGnxcLDhxum7GeusL8hjZ2bYuvyxOrG6C4mJJoDzlX/85UE8ikU63h5gmTEBwOCuuOSGInjV7gejaujp+eXw/f1IQqT0Iz2zZxH3qaPPW1UIskn48tJ7HzVLHhDJKizg+ujV1rkbQw0OK8Ro8e3eyVp/cRiUQCn3zyCY444ohIxLVm9OpUhp0HGrXTCxcMwyEa5rTEcxCIaoALmEmQqDh2gvQtcqVYFOeJoqtig6J/oHSxDHnfp7s2mkrs4hiPpUJ5Ot8B8gDFhb8XbNhdbJKKZmMnO0Q0RVHFxkSs0XroOAqJnXjMukDAeSISJHSz857VKkS2sfMCLQvrl9vYtRQvQ8UGDEFD1CEXcGYzsDMvdUxPbZHa+++/jz59+ijTua6LUaNGRSKqNeOv156C/525Br/93Chccv+72vlEhqrGCDWgg5VGZQ7IE2wYeyovS+lUsfznkZwnihzuhFzQHafA+JbmrliA1yO6m5oDs3HRGiV2CSc4bu74zLHoWpFufi+T2JV29ytWgGLZWMuHzWhhVSwMVLGQByiWSZld1/XHgtIrViL588uTvGNpiLtfs4zRJ8t0tF4bO0/aGm5+RfaKZZ0n0HJqaRW0GLtzzjkHRx11FLp3765V6Nlnn40OHTpEoavV4rxj+mDisf2MvLEAwnmCeV4KVSxvOMchIaltvhZJz5i48DfpFUs7T0QmSQix80TrldgFFnRX8LwIcMBftHTVwKY3T7RCvo66+cPD58cM8v9uTfc2s1eKXXXaYDw7f1PkcmVd2JTLhd7Y4lfFapoHeAGKeTdPSKTMrlvwBvUOXLJPUK2vMuaIpYEdZ1GbTnWzAxQ2dqWIy8iD1w5hA8NHHXOB6W5g61fqlUJLbjNz5kxtpg4AqqqqMGDAgLA0tWp4m5X5IBGL+E0QZkBzSY040t5auQ0vLd4CQFMVS9rYOfzqi3kSFC1Gsou/VXBR3HAnZLs6KDD1pXI04H2bbtUxTY8WBa+dySel8E7WZR7zqthC2nRM8WPUqthw4z8+Vax+/Xnbt2aJnSCfzGTG90pXDO78oUZOC+mZesnx9F7Jtk2AsdOcLCIaGpkrxdhkDoAzjuodyOdR3FKqWN8rFuHkxFGXTVFc0VLUbQrj2S9zpHjxxRej0NKmYLou+RI7jmeNCbbsOYQ/vLbKsG75BhUG/ztzrVFZCUqtWMhRKlWsqJ3TEWzscsX1nQioyz0NSmlUsQ7323TrNp4frZCz4y3G5OIuvTQ+poGhOz5dxnkiLsZOGscuG17hHNcQNg2S7lXLC0GTl+iJJXaeksZLE+UTGpsKBEz5/PHo06WcooME2we6TIJIG1GfySrLGTO0B0b078J911KqWH98h7axizboeHt3K/WdMGfsLrzwQqxbty7w/Pnnn8d//dd/xUJUa4Z/yjEcJKLUpkvjlrp6o/QAfxGN05hTpyxy406SarqSecWKJHZRGLvizmpKYuc4hMSuqNU218dXxeoujqaLaOu0seMciBiTgmIjrSlRdl2a0YziFERC1i+ZbPgAxXGtPyKD/v/5wgnBOkHaaRk6T7hEHEnBIZ2sxwRsenreB/tAt3yRx/+hxqy0QK++k4Z0p5570tmWjmOXr9+chrhVsWTILxVKfXA1Zuy+/e1v44ILLkBNTY3/bNq0abj22mvxxBNPxEkbF1OnTsWwYcNQUVGBMWPGYPbs2dL0s2bNwpgxY1BRUYEjjjgCDz30UKT6ybFhZhzecjsXb1BFp6YwoLXCnRBp8uFOvFIIG7sicnbFsrEr5hoX9MLiPy8WeGo2XfVjO9DEchk3uu3FVMcxLmQSJBZsgOKyEtw7593bGQZhQvbwsrhw8eKizVj66R46rSC/7zwhDFDMr5tUxapoF3mVikA6k+V/E2Uh/HwXrW0Hmxm7gipWpOplVY95tHgcO7SMV2zg5gkEbf1aywHVePb/8pe/xGc/+1lMmDABu3btwt///nd87Wtfw5NPPokvfvGLxaDRx7Rp03DLLbfgZz/7GRYtWoSzzjoLF198Maqrq7np169fj8rKSpx11llYtGgRfvrTn+J73/senn/++dA0iG5QUOYTvSjBJOGRGecA1LOxo9PzchT1SjFB2amIG2AxmVF2gfdqKokqVvBct2pjiXZrWREJqCiSkRzHqEgnEtrz1GXoiRKfkYRUYhdhwoYhjye9nLduJ26Zthh765uo53zzk0K4E24oH0E+L71np1uISSqGyWgOqF4T9B7DlqU7V0RS20OZLPc5S0/Ad6u5zYp9pZgIdIDiEPkj3xXLUcUq0vgo8fIWavbfd999OPnkkzF27Fh84xvfwLPPPovPf/7zcdMWwD333IPrr78eN9xwA0aOHIl7770XgwcPxoMPPshN/9BDD2HIkCG49957MXLkSNxwww34+te/jrvvvjsWesJMXoGjY1FRDBs7EsYSO9LGjmiAYjoiCOPYRZzsxbwuKslwdt43lMJoP6+K5XsO6uYHgF9eeiwmjOyrnb41QWVjJ+uGOMZyKqmvwGEDFKdTcTWouJymEqtiefaGv61ayS9f8FBWr1xiVzgc+vNSsoebfF6CcbagHc2Cjhi6RYscw3wbO688QfnBelpWFUtqecIcqCOrYpnm5EkOW4ujvFa4k5dffjnw7PLLL8esWbNw1VVXwXEcP81nP/vZeClsRmNjIxYuXIjbbruNej5p0iTMmTOHm2fu3LmYNGkS9ezCCy/Eo48+ikwmg3Q6HYkm3Sj8QGGyBm+eKP4k4Q22ONV5WjZ2pNF5wvFnKcXYxUZREMWIY5cvt4ResSVXxcppksFL9/Uzh2HCyH54Y0WtNH0rWQ8p8MYGJRUrsrozHxZIX2RHpoxLFSurPpsLewdAOFVsvr3l0iYPPJ4mr9YU5xFdpQU0x7Hzw52oVLFOYJ1XgY0aQLwIjgHNokWON77EzrALWvpKMa/dc6GdJ6LVz5PYseu/I+AJSr2+aTF2l19+ufDdY489hsceewxA/qOyWb2JZ4odO3Ygm82iX79+1PN+/fph69at3Dxbt27lpm9qasKOHTu4IVkaGhrQ0NDg/967dy/1PpPJ+H+brE3ZbBMymQxyObp9srkcckW/JTw40Fw3Wp3keOb7T9LINhGqEtdFrnmcZHM5v02LyeOKwp04ESstpVrCCywalWatupqy3HGpP+Zdv1+bshlFWhRt3YgC3rdmm5qAXP5FmYR3imNcpBL6t/00Zel1JBHTMUm2NjU25ZA1jOfpI8QYNpGu8+hyc7nA+ktC9q25nIum5rxu85olosZ1c8hmmwRvg2hqaqIZZKJtEg78tbLwXq9ckf/MwYZCeZlMBi7z3blcNv+c2SMyTfk9jA1wXCp4n/PknPXo17XCOD+1B0Wo30MulwusW6Ih6jg071BsaDF2xWc89BF0OZbfkchLz3vuYcqUKbjzzjuF5VVVVRXKyiWhy4u/99672NgJ2LAhAVIDvmXLFuxJAiG14lrYW7cXLJ2bN2+OVGee+c2XeejQoUD5LGbNmgVvuG2v3YaPM1sBJLFt21ZUVVU1r2Wlv1t4zepVAJKh8x+qr0exzmP79xX6bf/+/ajN7AOQQE1NtL7TwZy5c7BjJz1WAaD+0EHofO+hgwf9ubKzHlD17dy5c5RpSo1MYyPYb3311Vf9xXvblmD7eNi3b18grymymcZm6Yi6nM1bNiNvE5+nZ9PqjxFlXHvYVF0N0Tfu378fiUZX+F6GMGO4KVNYc1RYsngx2O9funQJtlS4EI2z9evWoaHe4daxa/duJA7tApDAJ6tWomr/CmQy/PW/trYWixZtC9QvwuvTp6OhvlDW2rVr4LVNLpvFsqVLqbIOHNjPrZdFQz1/Xd69N5/fATBjxgysrabH8bJly9Bp21JUb6Sfz507F7UfA7XbxeO+mDh44AAAB6trD2B17QHj/G/MmIEoa8yhg/n6PWyr3YZVB/P7mIc8Ex5s82w2S/EOeRRvvSt974RE7969kUwmA9K52tragFTOQ//+/bnpU6kUevXqxc1z++23o66uzv9v0yY6entlZaX/Xyql3zFnnnkmKisrMWzYMOr5gAEDMfTwodrlhEGP7t0CzwYNGsRJqY+y8jL/786dOinTn3fuuf7fAwb096+d69evPyorK3HxxRdHoicsRh07MlL+dFm5OlFIkP3WpXNn9G6+0m/I4Gh9p4Px48ejR8/gHOmi0dcA0KVzJ3+enH/+ef5zkRpr/Pjx4QgtIjpUBKUCl1Re7H/XkUccLszbpQs/BpgJOnfsgPJyvfHVf8BA9G1eB08c1A1XTDyTm65rhdlmMnToEOG7Dh07oSdnjOggzBju0lH/NqOTThodeDb6xBMxfpx4nB155BHo2LEj91337t0xcOBhAIBjjx2JyspKlJXxTXn69e2Hk08+WZvWiy++CBXEWDtm+HD/73QqhdGjT/R/Ow7QqVNnrXK7dhGkS+XXbgfAxIkTcdSRR1KvTzjhBFRWVmLoUHpfGjt2HCorK0P3eVR0EX2PJi68cJI6kaz+znT9ffr0xfCjj6GepdP8+ZVKJineobKyMhItKmgxdvfffz/q6/Xjpz300EPNJ9b4UFZWhjFjxmDGjBnU8xkzZgg3hXHjxgXSv/766zjllFOE9nXl5eXo2rUr9R+JdDrt/2dyHi9rzsMatDqJBBJFvtWdV36UGxcAYNeBglhZx06NHPDpZBKpZPNvx0E6nUYqor1jWHSsKFMnkqCYSlGyjxzHAZz871QiuiRGhXQqxbUT0g530tyv3n8eOpfzF760wSGpVODZW5WVlfnf1LFMQnMMQtxEQn2DgV8dERvyqtOGCDcYU5tS6dpk6iVAIMwYTqf08/DGUyqVErYLACSTSXH7OA7c5k5Np1L59V/w7YlEwojW8rIyaqyliLwJx6F+O/7/qSEKUk16xabTaSSTNK2pZLL5OZ0/2fzcLZKGQoWo9tDlZdHW+sDe7TiB+SG2QabXw6j2/Spo7e4/+MEPjBi1H//4x9i+fXtookS49dZb8cgjj+Cxxx7DihUr8IMf/ADV1dW48cYbAeSlbddee62f/sYbb8TGjRtx6623YsWKFXjsscfw6KOP4oc//GEs9BiFOxF5W8VsL3XXZcdp1R2n/b1OWaKgmwWD3JaxyK1IRWNwi3lvIuUU65BesUWrkgLPMF7/5gna8cODiLFrjeFOgpex07/LJWMnjuGcb0O9diE99Bwn6KRFl6kPmRNAzg1/pViYMWxiYyda82Tfn3euEDlPFGLfqchwTLgvBGll5z3ZBybzRBTupD6T49YboIv57fV0y10pFm2NiLrE8CJaBL1i+ZWUennTOia7rosLLrhAW/WYt7mKH1deeSV27tyJu+66CzU1NRg1ahSqqqp8kXFNTQ0V027YsGGoqqrCD37wAzzwwAMYOHAg7r///vhCsxh0lu8VyxkcceLacYfj/xZ+iqWf1vnP+HdexjfSTDdlXmymllosytPRpF+l8orVeR4nHMeJdPOE4/D/7iJQBbY+ti44rtnfUceOun79DcF1C2y4bG6bDh1prL4IAbrDjGGTa9LCMLay9s5v4rRXrOwLTD6PlLZ6v+l3hbQmQivdWIYBp1vHof710NKH8KiHP1HfD+7ZAZt2qXmWQIBizs0TbSrcyR133GFU6GWXXYaePXuGIkiFm266CTfddBP3He/mi3POOQcffvhhUWgx6cNCHLsic3bg3C0ooSee+tRpyProCeI2/3/LLBYyqYsOinrzBNFODpxC5PsirB55iSDxG8Cdnz0Ol/75XZomw3An+bIKf3cs4zNDrVBgF5AqGUns4qifcwACgOMP64Zlm+uoZ3kmyxPZidszrqsQ/TqNSisgDGNXnjZg7LgSO7lqW36lmOtL5xMCxqdQTjSwjJwjmEsqqCScDvMv+5yFt0a3FGMXNYKPqDn6danQYuwC4U6gL7ErNYwZu+uuuw5f+9rXcM455xSNqLYCk0VStUDGiaBonyOxi3EAat08QaQhg26K7nosFaIydsVUxZKxvkjGqxiLh4PgJj3qsG445+g+mPVJwawijAqNJLeTSBXbCmV2wQMSI7GTqmKjjwtRi/AY+xwlsRPnjfNMEEkVy9DRu3M5duxv4CduRs+O+jZS3PuxoZbYCQMUu4X4baI7hNmDUVgEAhTTL3H6sJ5Yt13tFRr2vmBhE7VwHLvod73y8+ubl9C/Xc74LxazbwrjZXrfvn248MILMXz4cPz2t7/Fli1bikFXm4CZuL35X+Z5MSRVAbK4p9cY69Nh7Ii/E05h8Wppu41yAyNnHoqqimUjnbOR72NEUO2Y/5cNcqobWFZkY9emJHYMUY1MbLSyIkvsRJI3XvdTTIVEMmUcOFfSMZEkdsRHDOrRAY9fd6oyT4Vg7PDBZ75UviCizX/Z5jrMWL4NQEFyRKZkpWPmV+qJntNSxIQD/LRSz5Nf+1o5wdwXKZfaqiqWzd65PIXbLh6hz9hx0rEt0VpUscaM3fPPP4/NmzfjO9/5Dp577jkMHToUF198MZ577rmSBuBrDYhDqeG68W9q7AQQnV7jQqgrxQKLRgupYg3UOzwUVRXL9GMxVbFskSIGQHdxpfYUIku3Di3j/RwGqmaWHgpiGBd5yVuQCB7zEYzGzyc+boldWOmNyJlKBhPSuapYyG+EYG3dZOnYOtg5adrMIptUtm0cOOhSkcYNZw5TlqmS2KloDN6SlP+3pRi7qGOX7dsld0zCjeccGcohDODbmIqdJ0rL8YXa1Xr16oXvf//7WLRoEebPn4+jjjoK1157LQYOHIgf/OAHWL16ddx0tkoYqWK9pAFxbhFUscxvkeogLuhMDOrUSYw6T5TdVlWxxVzkWCNqX9VWhDVCvOGpDwmq8mgbuxTu+dKJ+J/Pn0CnbyUnXRIq1U+xbewAkcSORxejipVIgKLW7yHHMzLSBH0Nsh5NUU1fZKpWnfceeFJrVjpmOp7p+VJAgjkDi6RpPCi9iB3qHy4tPLTUfQVxm6B4+5Zs/yJfBVSxnDtr26zEjkRNTQ1ef/11vP7660g2B+D7+OOPceyxx+JPf/pTXDS2WhidIP1/Ga6/GKpYVvoiOL3GVp9hGtJuxGX+LTUqWtArVrVO0Zsf/EYKc8+mmhjmp2AD0ZbYCRZExwGuOHkQvnTqYKb6VrIiEmA3knFH0IFZo0p7w4LXBTnCeYIjEJfmDY/wqxflGKR9WNAHb5w6gueF92LnCRIFHq6QlmQO4lzLEowUUeW4QUKlivX3JM25/8aKvCo6zsPsMf30A3kXi2mSradUvzKfzRPKtFkbu0wmg+effx6XXnophg4diueeew4/+MEPUFNTg7/97W94/fXX8dRTT+Guu+4qBr2tCmY2djIVQAzEkOUFpCzFldhpbfYOMLxvPnL35Scd5udpafF+dIld+LyqTYR9622jpVDF8mhgpQdSMNJGD2Q3J0Ns7qUES9MVJx9G/Y5qn6mun8/u8sYNacSdV9/xGzTeOHbxhTvRWkIMSOeanzjyMnQldgXmqvAsaGOnQyU/Pa16Df4m/5UhGVkVS+OJORuwceeBWLUrJmtZsdSZsqDr5Phn9yiejamQxBKvb8bh3gcMGIBcLoerrroK8+fPx+jRowNpLrzwQnTv3j0G8toPRKejYqhidQZRnONMy8YODl757pnYWlePw3t3QvXOg9T7tuo8EQVmEgi5V150WgQnTWrD0b8JISBt5KBTWRJ765sC9bQWsO3M/u5aIbYXjCvwOG8z4wliSCZLZklmeiaQq2Ld0AcydnzoSGwdADedeySmvr1WnZZbnLwWlUTPA48ZCdrYhR/QbEBih37pP1chrXtLDEOrrOxz/vC2Vpm6MPHcbQmJHfmKHeku3LYd7oTEn/70J3zxi1+k7rZj0aNHD6xfvz4SYe0Nov4uBj/DVtU6wp3k1Z6H96bvGnUDf5QWMs/GYkPVbIGFxI98XwTGTqSOYWx/tO2hJGV76FyeKjB2rVEVy8axY36POqwrrjptMPp37YA/vfFJ7PWLD/8ciR0KEl2ZZMpcYidGlEMpHcpHc0w5Dn504TG4ZtxQfPvpD7F40x5xWoFXrEpzYiSxI54F7NlMGWhRXQnGPpkjLRQhpQj8piqjFDyKicSuGJoKQC7ZVKtiXWF6EqVe3YwZu2uuuaYYdLRRGIiREVwMgOJIqrRs7GIcaVp2KQLVizcxWs6FvkWqba7bgS5H6ziFlMVY30Qx28jHJkyBKEAxCTKmXSs56FJQSewcx8GUK/JOICxjF8doNmmTQDwt0doUYzuTsfNMQQfd1f9Wx3EwoFsH5RzgUeZA5Tyh5xXLY65Y5iBKM9OqV1pKXjhwqcGGKtKpjyy7FJ6cJtfEFUsaJiuXfBeU2HFUsbFRFQ0tJ674D4N47BQjjp18Q+KliVSfRlFskoBKOjZqzNCSonOTmh04hQDFxYhjJ3ruMIk0q07QuxMXFGOnV2wsMGEiZL9JBIOXmlLFqR/6qm9WehabxE4qsguvck4yuljTNSQM05F32pLn05PYBZ+x6jxz72N++gTTNp5DhJbETtN5IkiL/H2caA02drJSKVVsQGTHOVCJzlMl3mcsYxcBYfqKZ2MXN0QnMFmar4wdIiyvLKJIn08T/SAOm6S+XcqN87TkCctkk3Wc4F2VsUJDymvmPCEvC8irYlVpigHddmcFHippTzGgzdgR9j4mDKi6fnGG/M0TZuV5oBxnoHnQpKTH8qQ8umQq6sJ7NR2Fu2KdwLOwEOVmvWK7Nt+1rDOGdWkKHLpLuCpqB1FG8WzsZE1JtnPAeYJjY1csdbEpLGNXIvBslopdV+E3T2JH4xtnHYHLRw/klvfnq0/CTy4aIaxPy8ZO8N3+lWLKEtQoSyXw9TOGGeVpSRWg6RrgtVExwp2IVOVsPDrdqrWcJ8pJx5XSdYRu+wUDfYvzsW/iCGMktssNlp3LETZ2krzGN09I3uXc8N9Jqxd1GRCH+zcPIsZOVb6WxM5j7DiSNK/uKKOZag/mMNW5mbHTKT+0Ktb7XYIpaaJ9aBlVbOFvro0dk17HCa0UsIxdiSBavIrjPMHfpD2UpxJKCRr9Tu5koDXhBItHnBdLq07kfLLimXFhDmqmAVcLEhnzutS0SCpuBnkVnLI8xrOPh2LY2J1zdB9lmjDMKe+3rMy4JPG67U1L7MRtHufY4UksdMFeOWcq9Vel55GlOpg4Tjh7YYDjFWvazoKDECux69LM2OlUkAypii28Lz43YmZjVxwaZMVSNnZBTSwnjp15HcWAZewiwKSz/EMQk2lffQZPzdsYF0ncOtgJ8f++NY6bR7RGJxz5STaMKtaDPzEkG8R3zz9KXQH0T9w6dJkijCrONEsxrxQTqWPI50bhToiVRZTl8tH5uHCDenSIZeH7/gXD0a+rWh2ve/LnOUuIILp+KSp02ztHSA9kG7Kx1EOSPMeRWOiCDVqtQxU9FkNUKmF4vfK1VJxOcG6wYTsihTthDlNkW3nmCzpLgEpi50vl2XGuRWU8MGHsimanJimWlCgG49jxbp4oNQvHh7FXrEU4iPp7wYbdxa+bGLmHde+AEwd3x7+WbgmkE21GqpNsOK9YZiOU5NUPh2A++eOahwkHyBrmUVVN9sea2v040JivoTgBivkSh9Dei5TEjp/m7KP74JXvnIkhvTpi14FGE3L5dWpLXPTKU3nF0pXrlWkKXrHceco4TojIMTBpaq5f/GGuYRy7smQCjdn8fVQ6XtMyqPqZZ7ObZ9zEeXQl/lzniagBioXPaYePLs2xE3XaLOw6UZj7obIbwSjcSWtTxXKeieaXdZ5oQzDpK1G4k2IgYBuk0ctqFUW4vH4awXPfxk6yP2jbREnqEeeJp0dCeekZLGoeUweUJo6d/5xJo3+vJ1mGOM/xg7qhW4d0LL2QV7WpS9K+Fo2NY9c6DuNckAyWjAE3trGTJHd58R4kIG95oRg7TYYqsirWkXvF6l8p5vjleTCRPKnAzrkOZQVbVE9ip9NeKprkssvS7FUmjJ3poUQXMgqkzhMcr9jWIrGzjF2JUMr+ZqvSiuruOMI1WrVh6gYopsvMQ8fGTuGUS9Sht7F7mPWjc2PbrMMUQ7bbbz93vHa+oqhiBeoYejM1cZ5QS+zo+vXKVZWhdQtKESR27Js4vLxNxjMZoDhPDz9fnEPHNI5dOXEvc5AOjTUkqvMEoh1gPWjZ2KmLYep2uH8nHAeH9+ro//bUqzrl6x4cA2uzpsQujrFkwhCrbAbDQvadxnHsBIWVmt2zjF2J4HdsC3D0vCp5G7loM1KrYjVoEDh06HjF6nvN6TfvhJH9MLRXp9iYpDAnNTLHYT06aOcrhkoicBhwgs9NmkpsUykYYzEsfbr9rx0GQqCe5qfVKtIYvGJ5dZGhR2QSMGNTBcm7vCpKn7WjJHbUPcF6B4aobaxjy6cXRiT4LBC2I64DowP07FTm/965P2+yoMO0qdaJqO0Zx9ppwqx1KivO9Y9SKS7xKhjHjnelmLqcUsAydhHAGxDkJGQSk/8UFcETWOFBb0GsN/mmpXKeCCOxox8sqhbbGmovIBoLtwdvk3EcJ5YFKszEpU/m+vk6lse/wOkwAiYSJN41SICYgY/P1lFdkL7zhH6+gPOEVg1yOP7/0eDxUnToBfFWZWz7JUnvuoX7i3VQkS5sN6ztpiktalkhz8ZOvkBEunmCGiyuucqbooOui6TJSHWpfSDmSxvVwZzjYOz005Je9HFCxluqJXZWFfsfgd9dwVepmU70I5g7VU3A1pRwgKeuPw3jjuiF+64cLcgj27RikNiJJDjN/z41d2Ok8gE1nSRI6UEc9jFhJnSCWcB1ITw8RECw/iA9DvcpH6KNqphQSZY9hHWekG2qbLWx3Dxh0G6u6/oSBUfSUQO76UuGdWDiPFEhUMXqSNKaU2rXJYpjp1KnG90VK2TsojHQZFav2D9+8USMOqwrvnfBcO3yw847h/N9PMjmwxUnHaZVV2uQ2MnGlfquWPqZuEnkjbnw5xOk701hvWJjxPgje/leSyx07RY8RJEi8dSsZw3vg7OGi2N8OY5CmiIhJ0yAYj+LRmw27ZOngQ0YGZcvnUygoSmnl1FYd7Q8JtlzOeBvXz8NX31svnmlIlrY3xwJs0n7mkpk4rGx01XphZPYSaXaWiWaQ7dc0t4nP13pnD++6BgM6FaB9TsOGtYvpyBnILKTO09orCEmjC4vP+TtmdA8GPDW5qg2dkI00/P5MYPw+TGDiPJ12kuexpfMseOc+VcEmarXJJKBLjoWSWKna2LRt0s51u844P9ev+MAlm2uY9KH6/lencvxk4tG4PfTV4bKz8JK7CKAb7smSBtD2dp5md96jJcY+Th2+tIKnTQFvi6/BJenxKcxk6txdCcWJbHTjNCuqtsU9OamX8L+hiacc3Qf/PXaU0LUyoew/lCSFVYiE30T0kWLhTthENfNE7x24UmjaBs7msG9eFR/3HTuUfjcSYOCGTVokCEbh8QuFgtLDSgYSMdxjCIIkFSHlfo/0jyHHXaiNUNULO/5/VedRNOpqFvEwOkOc5mdn/4c00sHFE8Vq9r7PHzxlMH4ytghuOq0/PWb+xuaOOkFdWh857fPPVKdSBOWsYsZov7zxduaS1gUXb2GVo2TCdQx9/RhPalXkW3sAnno3005scRMX2Knz3iUUarY6NPAJHSJn0exgIs+21tQ4vRwFJ/aaRrDnMR1h19U6PZ/2DkoP9zQ7+K7eUIPgQj4EcvTTZ81EHSThynadjMeWkjwvWLlPa8rOfTvinWCz7y6defJwO4dAmWROUVjjvd4RP8u+P3nj5emMYKiANmBO2wQcBk6F8G2WEUD+YnppINfX348LhrVP1RZpYRl7CKA14Uqd2ft01CkAWIuaXDgUFKGn1w8gnwZOUCx8Eq15iqbsuKdUNttH/qqQlJCqHunorzuiPlNJHb1meY8ESslIAogTW84+pKVFgl3AkdrrOgyxOzGJT3cML/jcZ4wkBC6jCq2RBtMeBs7Ynwg/jHCk5jmGTdJ+dCbx3FeKaY6U4oZ9OAb9so/pcTOof8NPFfkj6rFUZXBomNZ6VWxPPp0JXy6eYoBy9jFiPxJjf/OdJ2Nc13WkmIIJDb5v+UMk2qj7FqREsat8pbfJomtjrbzhIIBJVEWsyo2lPMEee0WJ7toz/xs81VccSqwdEwIEoqNUVQeyWQIbzeJ4VtUG7cHHebP4ezypY4e79PBgMe05AhLblZySba58ScoMmQNbOxIxo7yhnT0jgxkGhU/KYxjJ6tHYXLiwZfYkc/Yg5GyFC8dh3EgHplI7Bym49XjNVroIZlHazFs7Dq3sCpWx6kkrv0/KixjFzOEOnYEFwN5OVFGgtoFm30iH9zRJHYLfj4h6NDR/NPz5GuS6HRM4rbppiTVQulWoIrl5eYtu/91+hDfK7aYzL/3O8ig6S7YZsTFI7GLL9wJL41JF8cToNhQakfmU6xD2jQo3od1nmAlS6WQ6jqOA0fGjECvj/27YiX2BqYHINrZyAm8D+bjjU+6d1U0+HM8QLxeftm6HNaOVYaOxYpjJ/sOzp3X8rh3pT/88WAZuwjgd6KG6EMDxbSf4qdxmJM9fVIxibrPgucYweaRS+z0mQldBov1io2KMN1lsgh7KBPYKUWF8K5Y0sYuYbBhGdYf15folKMX0iJYlskmZBLfzRS8jYVynjBSmivqUhQT1nmCPjBo0qJdE/9QxOtTqnzFAdYDz7Ys7EHcYf7l0STLRyLpOAyDqEkDn69TjiG584Re7a3CeUJCA8+kRJY+BuVPLLCMXcxQiWL1T3KFhCcO7o5hgrh2Jw7ujhH9u1DPAobUGpU6TD6W6ZBNwCh72NrtBzBj+TapjV0xFn6S2WwxVSyVJ5g/rdhAYr1ZTDFu80n02QVjpjMOiZ3mxqxrExq4c1mqg6F/xiKxg/7Yz9vY+ZwdRQ911VjMG09YGzsSxRhTvPbPSzJlB1S9AMUpzrVeYa5I82iSPTNTxTJ0ROxspcQuBq9Ykz4tnlesngROR+tmJXbtFMKTl2E55MQ4fVhPPPn107TzstIvXTUHHRmeeIf4B6xXXt2hDL7x5AdYtW2fMK3+FVDhJF+pGCR2PBL7d62QZ1JILcYe0SvwjGyLWG3sAr95TGUxJXbRvyV/iTvxW4NZFYEn3TGZAsWU2Alt7JphwhCqoI5jp18WqYoN1FOS/VDtFWuiiqXmL1Oy/vc4gfQ0wyhg7DjPEglHWA63DOH80CO+5HHsBAeDqJBL7DjpNNNTdcS4VuvAMnYxwoUrHNAFw0vdAR92oQgaNPMGW+DyYjj4ycUjMLxvZ9x12XGMnYf8SrEwMCnOJNxJmJsneJIxU/D6VUWKysYukXACDL2pt6kuhKpYRnpQrAUqjm9hJTKijSe8jZ0+kSaSLCE4UkMR8ve2CoqBfJwpSJAivCrW4f5dTKgOfg4iqGKJndRFeDWo7nueGjTJzM+wzarBvwhp4NU9YWQ/fPnUwfwyDIhMJBz8tHKEOqEhZMs/b42WrYEmEtZiwjJ2MaMYEjvAbPFjY8JpTR4HGNCtA2bceg6uHXd4wAYm7vg8JsUZhTvRLDNur1iuakSRRyeIL/s4qfCkDQtxWfRGUawFKq5iKVW1YNzoMnZsMpmPDVtiLHydQVryeiPHoedBlGDJKhpkXrFswFXaeYKuw/TmCVX7Tjo2GGvMgUrtpg4/AhTiXjJHIaYs3TWrUDe4fxtI7Jj5qVoNC3WrD3U8yJ0n6HXDi9cXTCevg6VrRP+u+hm0yxUTkWS+g/yXX1ZcVEWDZewiQGUfofNcXLZs2ZCDXWx18ipPsi04UnS9Yk1UheVxO09wx4JqYVVLUtjFmT5BxreKiMoKSOw0qxSlEzEZplIbfkBnmj7RuNE1TWCTmQUojkcXy6uRV7Trulpx7Eq58fTvWoFfXnqs/1vmPKG1RhmM9w5lSTz0lTF0fsX41bWx89ZCMm3gIK5JJ1fSD3G5REZlWUppIPOvKXRvnnAgPjybCAzy41o7uVG5ei8dZXobx66dQrhBcmwpZGDnjMkECNrYaZyG2d/MqVFWRphNzEhip79KhotjJ6ng4WvGCN+RiCrRFEn8AlIjyWYSZ/3+6VSSJgzE6kIz8DdEuk3E1zFpbN5cVawudfHY2JlISHNuYR7KGKVShqFh6S8ThjvRvePXrH4esyUtw9HrY95NNdG9Ys0YHx6d7M0wYbuusFfJS5Cdh1mJnWiNNRmPqugMYSENd2J4YLc3T7QDFFNiJ7J50gHrYaqjJgxKCGkGInZVrMGyo6+K1QftFcufBj06pjHx2H5a5UVm7IQHAhqU84SizpvOPRI/nHS0Xv0aEp5S29gN6dlRmF58JyMxbkWqWI1Vj3d9mpFXZix3T+jPe8rzlWGUoggPHcfB5M/kpW6/unyUWV7Q45e84YX23tQvz6h+zhoqVcVCk+n3JHZM2R5c140m2Xa4fzJJgm+SCcM4dg4/nS7tus4TCcdBUjDpTPqUHU9xQfa99HqrTi/e/0vL8BXHf/g/GGrxt14HBxg7AxpYiZ3elWLMb2pxKcJ2blBg0Z0nJDZ2prYyLD26EKZlnutIpMgyyySeiJJq/O9mnWiKpVMQeeEK0zsOWBcgtv9F3tTaNnYG+dhXpbaxa8jk0CFNSuzi66jrzhiGq08fiq119WYZGdUnafJAry969JrujYExrZAM6kqEdCR2uu3P0+TQzJn6wEWmZdftMPByqRlDPUkXK7FLOAWJtvGBuAjrj6xIvvOEXvqWhGXsYobKVin0Sc5gvGQZ5wmdrLJTmwnDVAzomsA50G/fckoVWywbu8jFBm3sOCdI3bwysE3AW9xVAV55+bUh2KhE4KpIwDK+ormow0QEP9bs5gn9tFI6NFuydl8Davc1NOeJZ+yR0D0gkEg4gCtg7MjGNVE5e9CRiPLWNFk1uu3mjQOZdMZ0nRclF4fP4KelxosuDTqFcyALQ8UymKSNXSqRQGPzTUOmzhMmh3zdOahi9tm/Zenjjh4RFlYVGwGqe/5UaaVlhzwBAhyJnc7dmJDX1zbCnei3ErnJxOMVW5wZzRZLqz/kdYokN3+5Zgxuu5gOG6CjCs47T5TmO0XPSFqC6fU2VN2bJ3TqFCGOcCcmDIIMJCXGAhKH/zeLH53QhEHd6biNrDMCKRkPoxGIwz5QJXXVDV4N0HOGzGdicyySvMnes/V5SCaYOI6qupXv5Sl0w4TAoSV2JENochWjUYB07VLlfc5vT1l60WHSgKAY0GYYu927d+Oaa65Bt27d0K1bN1xzzTXYs2ePNM8LL7yACy+8EL1794bjOFi8eHHR6RSf4pr/1Swn6DyhT0McXrG0pCb+Dd2kPF1Ddgf6CwXJzKnuig3LLCjDDSg2TdXGpFTFSsroUpFinqnrjkMTK9ryeOWyz0hmlJue2ZjFUhD1V/DsCaUne+a3bGsf3rezsn5RubqZYjtgaqavSAJDetE2kex4oVSxTDo9WgrQ4Z24NnZS6Uz4A2zY5dGnUTBuhWNVMK/ZdduIBr9ohyVJQIKMSaa/h7SxSxloHegyi3OAlpVoeqWYvXnCEFdffTUWL16M6dOnY/r06Vi8eDGuueYaaZ4DBw7gjDPOwO9+97sSUakn+dBB0HlCv4Sg84T5YGMX3rivFDOhSPduRhPGg1S/qiR2OmWK6PGguj1Dd9zQqljVyisuM3jxt2hxp+vTVzEZMhBc5p1+RtvpiE7G6k1D+67YwOFK/5tkEruoa79qvhXrrlgVYxuU+tN5aBs7pp+0Tp8aaSTJVeFMTA+wNBMlfictQ1mu/n6ST6rPNIkYFW0hhCQBG6OTlNYmKScas04tiqpTV2Kn0S5ipy5zsqKgTdjYrVixAtOnT8e8efNw+umnAwD++te/Yty4cVi1ahWOOeYYbj6P8duwYUNR6DJRH+no50mEjYsEBAMU69Qpk9g5jpnIPG6IJVesZFJ/YSYZrXji2MnrTThAVppfr1ySB9WR2InqCvS3vCi/vmKNAtUGl/9NbAicj3ddtk3UzJ+QHg1GU5ZeJlFiy6k8vj+qlm0NlpkvWEonnxY6G3UHdBGnMW8NcVxynhFMB5lOkxGNbM4SYh3URWjnCRWzoLkuAM03T2gy4rI64xgirOScXG8piZ1BmSqJ639PPBr3v7Ua1595BP46e522kZ3+zRPBw64sfUuiTUjs5s6di27duvlMHQCMHTsW3bp1w5w5c1qQsiDimizFvlIsUB/nfEu+i93GTlAez0OV51bPza+Y+CRSgoWGrkM9kT2IVMOFv+VliBk7ph6Du2JFqgs+o8xPw0oPSmljZ+KFCuTHvS6DqkyT4EhLY/p0XSbARAJNlxcfA06NYUV/BFcQTa9YzXlrOvQC9HDGNP0+Qpw0kpGW1BHMJp+fZnHsHPqmBE7ZPM1BsJ28dY9btTCfiD7HYdfbBJFOv70dxcge3q8Llt91UcB+WK9cPlhbQeIffnoBR1Xqu2LbhMRu69at6Nu3b+B53759sXVr8KQbBQ0NDWhoaPB/7927l3qfyWQKP5gDgeu6aGpq4pbb1JSB4zjI6d6aTZw2stmssFzXzVFpM5kMMlm6jlwuR9Pd/CxAn1sYlVmivmy2CdmsWN7ElnXVqYPw7IJPKZpYiMpLJhxkGFWymwum5W6yrotcVq993VwTMhmnuSz+yc51XWQyGc0pqTgdCuj1kOX0bzabDTx3ib7MZvljwkMul+O2czabRU7SnwDQ1NSETCYDl+hbBy71W1U3r99Fz5syHHqYE3eOGAe85mzKZhmpkKBPNE7yDoJG8NlsE5f25kKVZYrSitYE13W5hviqNYRdL1y30OY5Zi45jrw5yP7ijVGWXoqOXJZ65rhE3W7hG1zXRZOwXcksBVpUDgqZTCYw9rPNY9oBv7dy2SygMb65Y4A4TLs5V9lWHpqaMshkkhRFWXINcwXziDN/m5oyIE1neXOf1Bw44LeTN/fVe5W4D6i8rkv1N7l2u67mfoj89+Uka16+/7LIcPYLINhvojlBg16j8+0lpkE8Ll3J2iEYUxHQoozd5MmTceedd0rTLFiwAAD/tJgPBBkvJzxlyhQpTVVVVf7fBw4mQW4xO3fuxOzZ74DXrK+++ioAYOUWB0Ay8J7Ftm1b4QlU169bjxmNa7nl1u2pQyYHn46qqirUN9B0rVuzFlWNq6l86zYmQApsp0+fTqn5ag/Br2/2O+8gP/34w2XLli1UWX0ObsA1Rzl4ak3Sp4nFqrpgOzhwmxcsuk/nzZsbqJuXbteunfj4ox2Bcnl4Y8YMlDcn21hNt4WHxsZGVFVVwXXp9uRhb93eQJoDBw74z1wOvXv37fOfzZ49G+w3rli+HPurXer58o8/QtWOZQCATw8gkIfEmtWfNH8j3R4fLPgAdY308z27d1P0vfnmm+hWBmzYUGib3bt2wzm4CzqC/i2bN6OqahPxJE9ndXU1qqo2BNI3ZoPfso9oHyDfHh7NmUwj2PZcvnw50onCd+UPaMF+27Vrp/IbDh08iE8/PUCle+vNN9E5zU/f2KAeIx727aXHytatNVx6du/ajfwZxwk8l9U1b95cbPsY8Npz27Zt/hxcuZmed47rQibnXLlyBar2LgcA7GkolMkiAWDXzh3UdyxburR5W8zXN+fd2RjfL4FDTcCGZfP9snZs344333xTWLaHNWvXoiqTX8d27ZK3d1VVFVbtob919uzZWNPRoyeYd/GiRdhy0AHbF6f3yWHjfgdbDxXWWADYt7dQztp1a/18tdtrMXv2VuX3AMBbb72FbmXAnt2FspYsXuzTvWXLFlRVfRrIt2R7cP189dVXsZlYE5YsWRxIk2ewCt8+Y8YMfLyVLmvevLnYvhxYodirdu0Uz6NPPllV+IbNm7Go4VP/d0P9IZ+GFSsKc1qF6a9Ol655Cz9ciMyG/Ijjrdn5fksxv4HVn4q/cxsxNz9Y8AEOrHGxab+Yhk3V1eC1ycEDBzn7YJCWuFiyFmXsvvOd7+DLX/6yNM3hhx+OpUuXYtu2bYF327dvR79+ejcD6OL222/Hrbfe6v/eu3cvBg8e7P+urKz0/75n1bvYUX/Q/92rVy+ce86x+O3i9wLlevm2vrcBL278REnHwAEDsHRX/puHHTEMF557JG5f8FYgXbdu3dCYdbHl4D6/nh8veIM6eQ4ffhQqLziKyvfRa5/gzS0bCvRdfDElpl+/4wB+0/wd55xzDjqWJfH7Je9waT1s4GFYuKPG/33G+PHYvOcQnlqzjPp2Et3X7sTU5QupZ+lUMs9cMifFM884A/d+9D6dNp1GQwN9curdqxdOOGEA/rFuOZdOEpUXX+THsls3cy1e27w2kKasrAyVlefhB/NeV5bXo0c3bDpAS3c7d+qE7c3jI5VKIpOhv6tr165+v5199tn43RLarOC4447DqIFdce9H8/1nJ55wPCrHDAIArKjZhz8snSuk6eijj0Hn8iT+uWEV9fy0007Ftr31VDv17NkD6/bt8X9PuOAC9OlSjiWvrsLbNRsBAL169cRhPTpgwfYt0rYAgMMOOwyVlcf7v78/N9+GgwcPQWXlsYH0DZksfjT/TepZ9+5dsbm5fQDg2GOPxQvN39KhvBz7M41U+mNGjESn8iSeW78CAFBRUYG9mQaw6N27Nz6p2yWlv0vnThg8uAfm1W72n02cOAE9OpZx09+5dCbQpHfq7tGdHisDBwzEop1BzUPPXj3RlM1hw/46On/PHgDRVyzGjRuHMUO64wfzZgAA+vbth8rKkwAAW97dgJerC+tPMplALiuWvIwcORKVZxwOAKipq8cdH/LXAADo06cPsGen/3v0iSci67p4du3HAIAJ55+H63rkL4PftPsgfrXo3Wb6+mDChOPxsw/eFpYNAMOPPBKVE4cDAJ6uWQDs3S1MW1lZiR7rdmLqisIac87ZZ+Oovp3xw/kz/G/u0TGN3Qfz/XbyySeh87b9eH3zOqqswwYNwvZNdcChA37ZAPDQ+rn++Bx+1JF4Y/P6/Pf06Yuzzx6O30vmpgdvnv1t83xs2L8HADB69Gh/7RzMzCMPTUtq/DTkN9fU1eN/lub76KTRo/HkajpNWSqFTGNBQjVx4kTsWbTVnzMAMH7cOIwZ2gNb39uAlyR7Ve/evbF6L38ejRwxAv+qzjPhgwYdhrEnDsRfVub7oluXTtjZkF8XRx13HP65YaWwDhIXX3wRltfswz3MXuDhlDFjMGFkXrP33+/PCDgwVVZW+uuQ9xsANs5ah6pNa7hlDhgwAIt25vfh0047FWcN742Pt+zF3cvmcdMfPnQo3tu2KfC8U6dOqKw8k3rGo4V8FgUtytj17t0bvXv3VqYbN24c6urqMH/+fJx22mkAgPfffx91dXUYP358rDSVl5ejvLxc+D6dLhzZWQNux3Go97x8yaTe6SRJ2KMkk0mUlfHLZSPwp9PpgI1dKpUM0JVgHAbK0mnqe8j06XQKvbrQMaooGph2SKdT1Hfy2iSdCg69dIKvPCtLB9PyBLXJZAKppN6Q7lBe5jOynSv4mzWQp13n3s+EEzylke0iirvmgfeNyWQSKeZ5OpXy27OsTP6tqWSCO95SqVSgndgrf9LpNNLpND0OEwnh1UAsEokEt99Fz3Oc9mPrShHfwnOecBIJalyJhPk635BIJAJ9Wp4uE85vE1uhBFM/Oxc9OI4TSJuvS04/OUa8+rzfKWY88JyQSKSShbWjLC1WWfEcrFKpJBxi8nQoL7RfOkXTVyZoVxJJghaVpiadTiPFrDHemHYIZWzPTmU+Y5dKpZBKBedLgjG49Gig1kuiXZ2EeB/g0ZlOp6nxQ9JAfjOdj7N+ptPo3bVQTiNHy8lekZWf4/Q3p9Mp7nMWsj5Ip8i5mkQFsX+RVzimOe0tQllZmXScpJhxH6CJeaezJ5PzzyufHVcUDcK5zN8HRbRFRZtwnhg5ciQuuugifOMb38C8efMwb948fOMb38Cll15KecSOGDEC//znP/3fu3btwuLFi7F8eV4ysWrVKixevDh2uzwScSmGta8U40wuNkBxmOt6yJ8Jx0HHMv0JqLXJ8RizhMO19+HHseMZAeuH4yAXuEnHRZf6qgzr1W3Cf88+TRo5T/BTcJ9ptBvPoUBcuegFn4ngG5EHD06y9K5r5rAiQ8IJ3m6g4Ke0EcYjmUR5Wh13kW47MeNmYhmoNqZn+4umg3fvZj5fPPXr0MNW2KtT4RDflHMF6wq4DUUl1V2vZWUYvBdl65AurNN7DwVtwbjOE4FHTvNz1foifhcIVUSGOyGYJaPwMoo6Jd0hL1dWphMcs9LvVjjilQptgrEDgGeeeQbHH388Jk2ahEmTJuGEE07AU089RaVZtWoV6uoKaouXX34ZJ510Ei655BIAwJe//GWcdNJJeOihh2KhKcwGGfbuUWE2DUNwLa9YiReuw3kvLQvAGUflJbGDe3YQpAmWJwo7wluMRAtUmAk0tFcn/PLSoHrQBErGjfNaZyFiv4cXMFNarcgrNsBc8Pufvcy7WOuTiacu7x2Qjx1n2j4i6B4m4iqbB043YXjfzvj5JaqxKi6frbqxSd94XUY1b9N14FDG5PTNE/TfIc+C8vQCBpp83LVDQVJSdyjDXVdcqG8SiRrHjvYSJuecIJ/GerG3PmgaQB8Mo0E3QDFbb5RwJ8WA1Pue+tuh/uWnLy0DJ0Kb8IoFgJ49e+Lpp5+WpmE9Uq677jpcd911RaQqiLg6NhjHLny5YSYEffm7ef7encux5I5JRpI+UaBg4SmafeaED8tyxcmH4a5/qW3zROAzJvoLmC7ZiYR60ZfRlK+Lc8G96K5YTt5SwSRuXOG5utywp2d5e+uXyYbvkUsMCn8f3qsjZtx6DvZxNmzd8kxBtZWCTt5hlDQLSYlunoDmuDL8sCA9TqAY8iy550Aj0oI7cXlsHbVGEn+7HIcXIY2KtU00Byo0VJh1h4LjhH+pveBQpyhfV3oG0Lf7JBUmKuL65OFo6KHqQFceLT2wOMG/5ZJK/vMvnTKY/0ID5x7TBz+/ZCQenPER7tHM02Ykdm0FIQQ3XATt98QVqkXm5it9cJKY5+3WIS2UwvFISglsn3hFiBbEsJtaVIZFuUCH4Dh5m6XRXbEC1bTR9WfE42JK7HixBINMJUELZ0xkGVWaiFS9myeCiUzj6okTS39SZdIHLE1mgfkd5dpa3c/Kz71gatIsRHSVlKl0SxfBq7Ly4AWdBYA9hzLCmJa8NlRJkLVo5NAhqoPE4J4d+S8I9OsatIumJJICRsWnKcJcZ+PYiSR2prHhdQ9BcZVJpdNIz5P4jhzQFd88+whzwrwyHQdH9e2COz5znHYey9hFQYiBpD+INBk7nZhcETdjVX6WBL0o8kGUCU7L/FsAeOkiMGjc8gxOk4r3qivHdCVQ5HfrSOy4SRzOpscu7p50gyiBd82WsG7jw4CDBbefh9tPbCKeBRIRtATLz7kuxfAJ21SDHh7jGBdTG1TbmTFsUQ5y5le9kfWr6g3WRaowaRUcc0AxbVsthyY+fQ7nGQCMGdpDePWfShUb/HY1fXkaw60LQySM3bRvjsX1Zw7D188YJq1PfKCIPtADjjSUjZ1oHKghY6bDrv1y1WrwhzSgMWf8jDuil/JKSRnC9Idl7GJGXFdvmQxaVbDOMLZBvBO16NPY2sOuC10rUgGDdYB/84RIolLsU5sIqjZWFS9cZJk3JnfF6pbJK4t3Os1/Y7SGkg3V7h3T6EI4hzlw8L9XnwQAuPfK0Vz62LL1HIXUaUppYyftJ96BIxYqzKFSvQX4cND3VoucJ1Rlm6SRpefffwzMvf18/PXaU3DRcf2FGzBXYkfVpdenokKuOPkwAMCI/l0ChykeOkhMXE4/ohd+cemx3DRaN08IngfyGRwgqJsnkuJxoAI5d6IwSyTkUkA5481CJPGNgjBFthkbu9YIXnuH3cBZBBZ/8fFKWVaYocYaNwPAm/99Ls67++1AWhVjqSrfQ5cKvss3bwKLrvAqtfeRB5WEh0eWjjqKfU4yuVo2doKFiX0qNNJm85WyeR3g0hMG4sLj+iOdTODpeRv9VzwmKx+wXKtYdRpTVaxGmYWy9dNRl6I4hefSfMxvThHacAR/B9I5wTZLMBI72quZyatFSxTqBRI7OBjQrQMGdMs7eRkxCwIJcv5KMb1yvGRfOmUwjuzbGSMHdMWsVdsp+kTo37UCW/fW69MLs+8Le3AEGFUsaDObsFeKsXUGQvUQL1USVqpMzXldcJ4QQyWBDYMwB0orsYsZcW18IruHALS8Ys2J4i3ow3p3wvC+nYMkGJfOb6cuFfxzBp8p4k+gqLYuYSEKv+L/rVwk9SigVI0q1ZggBY/fC5zaOUyEKHwKt+6w/cBsCEDBW5qSHgq8F3W8YnVo49/Fqc6ng8BYkdDJa4+w9w6HQRRzBMcJ3lvNKzfMmOJJ9mXp6ReCv8HXDriu+vCqvV4LSEkkHJx6eE90Lk9p2+69dsvZmrXwy/PHE0u77gFC8p4d40mRKtZwrJLpWSaV/GUUxkfzpU67xCVFJKEZOpTOEzsV/+HQiS2mAzYMQRS7mTALfVAFlwd3wrA2diGlJl1NJHYCh4rQdhYRd0NV/jAerDwGzCSch5ix4THF7CLpUP/m6y6txE6l+mOhH+5E/RGqgNJREFTFGkotVP0usxmKsJGqJBs8FTMbU5NfbrDs80cE7wY3bX3RYUVmZya2sZOXH/pAyT0Qyt976NbRPKgtXxVrPh5VUlb2He0wQa4ppmNfnJd8Z6JF0pagc/5ioaPqNoWV2JUYpvp3nfce9tbTwSWFCwenwBH9uzBJzAeGKNyJzoQJy1yJJHb6AYojSIrCZZPmJ2n5r9OHcvJoLKBMGtPTrkgFHGQY1WUlIjDOuqCFKeINh+88wUq4+LSGldjJYDLuRBISbloDqa+ovDCmEnxaFHVyvksosaP+DvZUtw5BpsWcKeVv/DJmVWhjp5ABaTu7BfIp3sc83Uwk2rKqVeFW2Hooxo5kzgwnGs30it+ZjHi5iUVw/plIKlXpdWCdJ1oB4pqHbKwqYedyFu2/ff00XDf+cP93mNMkTwUE8CeMjlpEVr6HrpzFHDBg7JwoJ+dw+Qr0yN8f1bczlk6eZFw/+zzpBBcacZl8RkzA7nB/spLbYkvspAu3I34H5KeCHoOqQYfDvwVFmN5g5ps4T3BVsRH6wDSrrD/YdLyRpqOK5ZXNPyiFZwLI344kjZHzhGQ86o4H0cHLQ1wOOx6432cgNPBQkU4otEj07xR124S6anG5BIMomchGc1c2rjl9LKPZNHyLDsLsaZaxiwBueys6QbeP9tUHr4PRRb+uFbjpvCON6yThiH5wJkyOCV6vtxYFE4kldjq54/HaDAuVetOBWNUsyq9Kp1TvCstQSxi4i5ij37qidMoFV7pZFiB2ntCQSGipYpVJQiPq4aOUNnYmhfHGkMiIXafUy0YP1K6bB5EDmmyMiGJp8gMUq+tSQXXpX9zj0OTmCdn7inRS+l5mYydLpwLZHiaBvmWQZeMdAmRrdTFMOKwqthUgLlXVvgZ5dPlChQ5X1UKprTTsKjgJCvlJ2wVO0kE96GvDwqoIRYyPrnibp2LURdR+M41zxT7TPTSb3RUrao+g5E1H1W8WJV47KZ2P+luygHJWroCNXQTa4paUMBTopRL0nylpspE5oFswiC1VF/W3YrwFVOd6NnaisqdccTw6Gdxco1sHb7P2IJK4qA4koce7Il/c45B/84QZTUD+TlqpSpJpR1IVS7alscmDxDShGPbVphK7YoQ7CTMELGMXM5T9qtlL2hI7LZu3aCDzs0zkiYO747LRhzHpw9XYqTzF/Rx9Gzv5lTMycDdQg/wq4+owDi4dylKBtkxSAXjlNDngfwP/W4ObMvkv4DlPFJPhYWhiqqLDdgTpyDGq2CjXjpmqnU3Smtwryru2Si1p0SPmgatPxm0Xj9BKK6u4R8c00gl+4GWxjZ1C2uIAHctS+CwhtSPThDEbLEjsaBpJJDknBhcu//AsOPToht1R0Zn/Eb4cHvg3T/AZJNk3lKeTUuLY/hUxPKbtRKZnmfBiMddESmV66zzRDhDYeNz4Nj6SsVO72iskWhFporyNmHe3XDA8VPG8LMLJzxml3AnkxL4OakPZR4blnX10H3z2xIEc9RZ5YpWXYXLzgqieuO191EbokryKk35OO46dOpHjRLuKSwZ27HYqF4cT5UoMDA8JotTjj+yFcsFtL7L6SZSlEpj9w7O5HtMOxM4T+hMiyNhq5xQw0LJQK0KJnZSyeJkK+jAV74rGC+cSqN+XTInTVqQNxg0coT1clJtQ4mob+c0TfAGCCFxnkIhk6vRZgI5oVVqwUJ+m9SBcEAMFqjfvUONKUD272fE2aj1VbDCRaPLr2i04jhMq5k8+b7h8HniqWJlkAGD7qPDrxEHd8OTXT0NZKhHceKhNSb3B81V5wfuFRYsk6x3NS9azU5mUjmKA157swSpKlxZTFcuW/b3zhxvlV64x7IGTescRjUnrkr/vkE42S2+CFScSsjh20mJjyROQdnuHFToRnUZkY2d4uNa/Jk6+tpXCxi4wIjTqrEgpVLEOu24Ufvcn1P+mTIs03IlRSWSZeu94El8WYZgwFawqthVALUXRK+fnl4wk8uQzXTM2GDJDXI++ZEdZFvG3VmBQwzI9iFzfdYPFOggulMU0gifBOpAA7KlVDpGEle07OgaUokyITpyCxJyf7MmbV94/vjkWxw7oyuQP1/AqZtgD79tdxsZORIKeKladhiozZOK7v3gieggY47CqZN3rBx3HLL4id85K3jtwMLQX/05T2m43KGnlqQNNR5Ro7rBjmkojaFyuqYX028PRGHgfsw7C7OYJ8bsOZWbOEwDw8nfOwN+/cTr6di3XqoNLE/F34FtCNpWsSUzHn06cQFPYcCclBtthLueZKSaM7Id5t1+AG846olBu82L8i0uPNaCN/NucJvqUL6snvoVHtKjqOk8k8pwMXabmQtYSzhN0/fy/A780GR9ZpTyVtagk8rkoQPHR/brg4WvHyGnRhLgd6EOFKI6djNHwn2sslKWS2MkkQQ7YA5pD/SvMx7wWVZEPp2Ky0QfTSuOiOcBXxg7FzecdiWnfHMu+CtDCp5Gsv/C3jj5DFMBWFKMTEK8Xpw/rCYCWTsviKuo2qygeZ+G9Xjm6SPAkdiKmWlJOPtyJpB7OuxMGdcf4I3tL200FMr3JfeoyyPPx5p84dVFunghRpGXs4kYMJ7D+Ak81E4+bYu1L8alig8/EdhjBZyL1LPtcd+GI2l6mXnMyjRhP/O/BOFwBJxFvDOpsTPkAxYK6NBswSnwpMi+vOheu1vzSjWNnApP0RteRCv5+6eYztPJEpUXGaAMM48k5kqSTCfzowhE4/YheTD62HP7vKPNST2LHT8Pi958/AbdMGI4Xb+K3e1gmg9+m5N/xLuSCqCPc+mVVf/7kQdJvNPU01QWZ3jS4sbjQwp+HdRdHeCgwwuJ6RbbfUWCdJ0oMXnsXg6HyBpLJQJadSqNAb2NWV8hbFISMncIOhaw1wC9pfnvUJuJJ7BKSTS9YP59hC2w8EhuTQJmOeONQbqwcVVgiYdCeIRtUxUgUyg++1faK1aCjmCp83aJlbdhZEPPRlJCopiNkO/G8YsVVmzewsfME89ujjxpjkoOTDxfo0akMt0w4GkNI1XIEBkU3X9z7Ce/mmuDcl2PCyL7cK9+oMrTXifB9GlZKyoIsRxQknyxfVo1KAhsGVmLXCsDrgyiXHgMhrwQq0YLBI03HmJ4vseOn1XU0iiaxi9Ygpl5zoQOaGhh9mHh7iVKyqsAozJIWNKUV/MvamQDFoipakSpWBZF0Q8700r9lq4eZKjb4TKaKNaFR2FcRDqiiOSeTMhppRai6YpjPnLyliWPHp120fhw3sFvzWqBZj6Svza/uK2QIBCg2K4qbjy2Dfhc87LIohirW2ti1AvA6IWWgPouPDuLvEPlFvCSPySQfPX7dqaG9JEWLWCqZwI8uPIZ6JpKWqhioYkFtY8dZhARMCM+uyoOR84Sj3jgKZak3JgfisRRXM8sWWZXdZy7HSuzUdYiQSJjdN2kCUvIuZbogPhzIF3vdw4w6JS+OHgnZRmYyJqLEHJSUSv3iqmKZ8o2u3JIkiUI2bYMWoSAOjBgP0fxx6H950HVIMPeK5f+d/x2usWTZePVJw51orrcmsKrYVgDegE4X4wI5BVRDIew9mKpsZw3vrV8wg2TCEZZ/1WlDGJqC4DEeuusYtzyD+aSKTqPcQDUlYWTcMaURvaBe9g5SGYEB6YGQWSrGSZV54KqcJ1yhuYK5tKd4BwKqZKVtJp+xkrJ10o2KZeBVpwO9cvlZwzN9DvNvPg+xDukEZhcc8owZO5HzCTs3qJdK8rQQ9zjk3kIUeOQQ/8+hSePjZMyI7PYIFcjUcUnHpPOFawYkTm+dJ9opeAMhlSQHconokIjCWfzt66cFnpH3tpYTwShVl2Hr0xd8Jj39B/IH0yY4qsLSOU/IGyZ4umR+a9CVcIC+Xcqp3zIIJVac5zpx7BKOeFFXfZ8uHMkvVfmjDuvGVZ2wJemqYk0+QVXkl04ZRJWtV2Y4xijID7vcvx2YOU/wQId9Y+eerFx5T4skxiYQHfIcZpSQMAoHIlETRzroRGCmVaDjYAqqV9TpNZGMt9ZXReulK9Stv6YWq0xZNTxVvu6aKUIYJxHL2EWArppLdLF0lHqo95rPRDjn6D6BZ53KU3juxnF4/tvjUJEu3NeovDlAd9OKqNbhfrMTfrJHPRlzAxRTf/MmPFm/gC4iVf+uFUgR0l8dhwyhylpCC0kPq/6LzAAr3sukKWReljnq1akM/3X6EOGBRhqWg4OEE68q9oKR/Yzq99OSf5NtI2V69RnHqJJWqSpN9kpznkaJx8mGxuCFq9CS2BnWlQ+UHaqYPE2CcqV5NOvjXSkmql+lHpeZn9B5GSZeMC91EHK4xVO+3zDiNHoS0Tz+78bxOHFQNzz/7XGhaRIhBtcqCxVoGztVL/Fs2ORbDNdwX3MTkOHUw3tyaJH/jjK5ZJuE8m5J8BkWcuGYMLIv3lhRi+vPHBaBSj54AYpZ2qjfAYlF4Te5YJL5Bkpc8fmVik6cQQZNRB+7yQhP+QpSwkBWJrt+fv3MYUglE0IpUX4cuMpy6fTxQYeJ5+YT7MNxkaeW+soZK9l7XVukOK9ipGnj18dzIPBgYvMlYxDjgm6xunRznSeYvIV4fwKamt9LJXZa1IQJBM7vxzxdZmUV8sn2nWDdsrXBZPyMGdoDL33nTGW6MGuRZexiBldipxM8KG46irLVmklcTNMlZGISjU0jf6UY/Zz8ed34YbjzslEYKIgTGAXKK8UCL+mfpFBXtGAe1sOMsRMvzMFnOosHTyIqriz6+AtI7Kg4dvzyhSplw02YTRNW7V14b94eYVtQN5+jkZi3sVHvdSQcinJ1QebRkaZSTIDAgY0dL2FvZuA6R4WE7NosEXTTxWnuLfe25v+d/+1w/9YBeW94XDuc3NEjeHCRHjg57RuVzjBCZMvYRQCvvXmLH+U8oeykIjBkReYrdTZcFrxkUomdzmYMjsSO8SJlA1DGBa6JHfk3Z+EXSRRE3p/dmRhL6rti+ao23nlcJMGjaRTXWRTnCaZMl3KeoNN67ZcQbBomMQXZ9ACw8OcTjWgNvuf/kpk2OCznpamWlL9jDz6qMSR9LbXZkmUly9VnEAyZAGbs8ghjiwx7CDeJ4acCvW5o1q/JsPEc+UT9JlaP5/+VS+x0GVKtZES5HEL4bw3K1FsbCmuiOE0xojBYr9hWAK7ELsZwJ0f26RSaDpP3IrCTeVDPcIySsY2d8gHfeULGXMUJvsROvBEHJULkTkeqYgvPy1L0dNW6K5aThi9547cbq/qI2oRRbp6g3/EZU5GUVCcMCgm2bUX3uepCJMGQt4cj/J6wwX/Zu2JNulM0lsTpZZukihF2qH9VdakgYkDZIrnxEQVlyhiCuFYa3TVLd/PvWFawl84IzEd4c4lfl+pQInjHLQu44qTDxJn8csn1SL9OD52av39E/y5a+ej5xzsS0+CHy4k2GmwcuxKDu9Bx0qVilH9Pv+VsrTpN3puhMJnvv+okjOjfVZLWDMmEeKfRUXXwGBZTo3kSJkyIMo6dIj9Jmyh0CnvaNr0zVEaNiElkJSaiIovBM5uo8nhSBpFEVI+xi/eDwpYXRnqjnQ5B0wVZWbyUxfBSJPOq6tcpA2BUsSRzwHx/eOcJcd2mEEoaJdC17SpPFRi7xlywPoDPVNPv85CFeJJRI1TTanyCLLlOC7x48xm48pTBeOSrp/DL1GDyZGmKcWONDXfSCsBbwC88jvSIU/WSnEHQjYkXRYUhA8m/fPbEgaHL4apiJTZ2gUksYKrZx/SVR0WYdc1QxrELMKb0skluKDkmJIWHAGOnoEmmSgm2E0MfJ7PjiAvV6R9TmMRB834L+9hwPkRR+ynrj6HM2CRCyvd8hsiDTMUd+2wj6hrL3D3Lg47DBDun4rKxiwKZg4AIuiExyGSN2WB9gHosF1Sx0b0nophIhGnz4f264PdfOAGDehSuhtOVfjucZzL62HxhYVWxRYZO+7Jp7vvyaNx07lHFIUhGB2dAkjimXxfOUzV4U7lDmfkwUp3+A+m12p5zpZjBTQ1h6vSgDHeiONGzXoK8dKwqVrkAg38FGC9b8NTuPafbT1Sl7iKrCpcjz0vUF2Ai8r9FEiSZJyQPcZ+8daUCgXwChlBXfaQqO7zUNw+ZbVcczI6ohO9fMBz9upYL3nr1F/6mb2wp/M3GHQsrsSPrcuFq25iZlCtDGLJFqlhV3d63ySV2MmaJX4fON8jSl+rmCVnX8vawqGGTrPNEkTHrh+dRv7lSI+Jhz05luGw0bTegISswpksV7oSHz544ELsPNuLkIT2M62NxVN8u+NoZh6N3Z/lCS0IksTt5aHfMW7dLnZ/TTjxVbJQo5yZQBW7mM1N8plPEwJTFporlSRAF6Yi/ZTZ2RWlZplCdgKh0mxd+kBu2zkIbe7gTQ8lEPp14/JowDnEEkvXoYRH1MKasUzCHKtJJXDd+GH4/faU4L/jziyyTNZOJI45dc+WhEUYSqE03UV4m5wTqMymCHVaOUxhrsrVP5NRkHNMuJgmxI/hbVGZa4mDTWu6KtYydAYb06ih9f8rQ6ExSXGFRVaf7RMLB184YZlyuSPx+x2eOMy6LRTLh4P6rTsIjs9djyaY9eH99gcHTVRcEJHaGJ8Kw4Evs+NKj/DvmNyWx48exky0oIvBy5Fx5/WS97CZjwpQUE2x7eio10QZOMc4axpORvPUM3ocNH2TCtMtgspmqDrIx8jZ65SsqEElsSaQjSOxoRtuMNmm5xN/6/Jp5hY0K5wlVXew8SjgOsm4wVqSs3yLZvhqOB70yZftM/gdppygty4OJsbZumao8kWq08PHzS0biexcMV6YrhtBIJQ2KE/FF4w/Sl0w46NulAj+tHIlhvWnvXy1VLFeKF/5EaALV3DW5o5NSxRLPyyQLiqhO/jojj7lH0sduMmEYDRLHDtB3tmGLFIWBAYAvNl/ZJY6WTzLOGnU7jqEHr7wBRHuH2Z3N/L9l6VQ0KRlSauMNph47LBjEXJZeF1wmkqFWxPR8ddzQ5vQFkAwbSVdAYsdTpQk6iZobTBzKuFYa3YOUSWBcD54qVnTIU91fzTYLfajSo8fUW12lBQkDE9MFID+WRIfsiJdM8csM8aFWYhcB5KS74awj9PIUW5Th1VOkOiMePnxwVbERJQ08VWzpnCfkgewCiyfnGbesCBI7cfk86Yq6bJm8TpX/3987E++u3oGvjj9cWY9fJkOkaIP9+w2no2NZfikT2dKNGtgVM1dtB6D2YGbLiQMqm1duHmY8UyRJJXb0b5ldY9jv/MZZw9CvawW+MnYogByXJN2S+d0RPFjojNl/3jQeowd3DxAgdp4IL7FT0RIaFN16WcLQLfaKDZBBv29+wY6r/Hx1uWXyyg+m01mDCgg4fIXsAxGt7/7kPDw5dyO37opUEplsUyBPGAZbBSuxa2XQUfkUC8XiYeL6Jh555GlHpXbRV8WSJ3UDAg2hdp4QrJ4cCG3sUmbTNS+R4UggOBu9ONyJo0yTTyin5biB3fCtc47U9upWFUl9l2gjdBy8+v2z8PUzhmHKFSf4j1UezIFyYkDYsSeKlSY3TterTHSXsA6G9uqEG846grpHWq7GCgnZ4YhT/oBuHfwxS9lvCdYW1nnCRMoo0eBFk1ZStoGafRmiuvDOE3lIJXaaBZveBVyM8DoiW8xBPToK7R3L0/x1jNfvUXfMMN9lJXYREKbB1YtuPDtKWENrFYrJqqaI1Td4B63eaU4msSsuYyd/b1K16K5YE6YoXyd/487mXOmiKPo7kXC0Gfs42lpbRSJkfoCRA7ril585FplsYRfTktglzJge5awWbBDyMh1hwVKJiAndRZwTcaw7MjtVVTeKpCeUV2yEGKMi6ZGOijtUJRKEkdhlsvxKVGNCdFdsUsJ0UfmJv0291WXMdGhIGNIKwvyFfCeys+P1Q1RZiL0rtpUhXH+a54rr/tZYKtMEPyaWLD2bNpiYa5dDSZyKt4vlOJyd9ETPeeZDZGNnytgJys/bAOlJKhgBGETLbzGaVn7qFzwWPKdv9tCo24nP7AAIx+QEvkVTIsK+E32HSKIbF4ptdsKTPJN1Jgk1ay7HTxPGIYkHanhxTB3ClhX3XbHD+3b2/864ojnvUP8G68r/y1fFFkphy5OVlc8vTMatI7aQMpJ3pESapE8ksePtYVFCPInKVOaJVKOFMUplY1csxLXX8ZrBxMPuiD6dcMZRvXD20X2YdHRKUgVTchs7AiaLkKgs03ssHfDbmX/9WeFv6rUmY1yMlpUHDiXTFf6mbxggnhN/t4iNnYjJVlzLxN8qo6n6yPLiNPYO8KExS23ZOcSTkpMp0pQGgB/0OxWhAWSHxihMBy3R0sujk27yZ47FpScMCNbHrrUO/zmbgG1/XWmaiHE1bbO4VLF0GXQhHQgGjqRPJLErxh4TRhprGbsIaC082jfPHgYAmDCyb9Hris3GzrDxeJeXP3PDWPz5qpOoNDLJnvn80MvgOHn1ZjC3hFGVNABZFHVXbAiJHa+aBEdXpLo+yPtbaHfDvDhhUHdtOkXQljwRf4vsfEj6imJjp0gvYkRNvam1qjOgvagSuyjMjcdc0AVSUKpiE4I+p1SxQRr/78ZxeODqkwv1iGgUkxZRYqd3mCKhs/lfd8YwOI6Dr4wdAgA4d4Dc6UXI13l/sKpYzTvRReti1D0hvPOEOJ9QYkfYOx9B3N+uewOICa44eZBxnjbD2O3evRvXXHMNunXrhm7duuGaa67Bnj17hOkzmQx+8pOf4Pjjj0enTp0wcOBAXHvttdiyZUvJaC6V78TnThqEmT88Fw99ZUzR62opdxDF4VGYJuoVNKK6WHClB5JFS6YGI6U4lHTB2B6ILv/8EX1ReXx/HDewq/ZGxJ6udRbPYwd0xRdCLEbByumfVLsI+lWnv3XGcNwMT7gAxczGpSsRYfKJVbFOrE4ixZCgUOUZJiLVrKJr+niHpVMO74lLOJItabXEx8aqwteW2Ok39h2fOQ7PffM0fHaowntCQRMrbU5qrrWieWwq7Yrzfl4ROpTxJXMVhCSvA8H88cPlhK//7984HZ3KzS3m2gxjd/XVV2Px4sWYPn06pk+fjsWLF+Oaa64Rpj948CA+/PBD/OIXv8CHH36IF154AZ988gk++9nPxkdUiJFUrPhyw3p3Em78xborNgpUm1vAeSIgYaL/ZZ/z8kXdxEQLjwNzVayMFNGVYsaqWIeu6ReXHoup/zXGyL6RPV0LGUDi76tOHxLLyTWUXZpGmhYJUByyOWipkB5zaFKXKq2JhD5WqRWnjED4G56NHTVe+RI7ek6pt0CdQ2WxGGT9eHD6BKSTCYwe3B3eciLy2BfP9fwL2RrtCJ6zKJVzmwwyyatI5Uo+L9Y4yNMTrsA24TyxYsUKTJ8+HfPmzcPpp58OAPjrX/+KcePGYdWqVTjmmGMCebp164YZM2ZQz/785z/jtNNOQ3V1NYYMGVIS2lsD4hxrUQ1BPUQWu/PycxiPKFfWsEg6DrJcg22Hr4qVSuwkJ1rKeaKQzlgV6/8f8VtQv1AVy0js+nQuU6aLC3KpFD+d7DYAD7oBiuOE7kYXpEOQT7Nt1DQVbzeN3SuWeWdyyCQZVNorVk2jxAqy8JfO+qQJMmvUOHaOY34YL7Q5v8yC8wRbF30I1EEkG7tA/UbZ+WUyZZASO/JdhcD2jnegjbJjhv2mNsHYzZ07F926dfOZOgAYO3YsunXrhjlz5nAZOx7q6urgOA66d+8uTNPQ0ICGhgb/9969e/2/M5kMldZ1c8J3zSkCz5uagkENSeRywTy5XE5Qfp4G0Ts/fzarTBMGUcrktQNZnqptvTYhy3FzOWQyTLnEqpbNNhnSTPdFIgGgOURAwqGlADyJHbmZZJuamO9zkRN8Y5bo76Ymgt6cWT/mslmKxibi+7NM+5PtTdKTzWapNBcd2wfvnjQQ/1y0hUrbVIidgGzI8cabX+SzJoYWvz6ibbNU0NDgXGLLEcF1c8L+CQOqHQkXzSZJW7luDm6OdgAo9J+YnqamJmQyZL5CO2Zz9DflOEFWWbp59JHPvX9zOXoMsWNeBN765j0jy8wx47+pKdiP2aYM9e1+XqLtyDXB0Vk/BesvOQbJdnTdHJrYdUgA7vgk5qZq7f7lJSPw55lr8ZvLjuWmc1BgLMj3ZN9lmTHgtSH73KepuR+yTH+TPE22iR7von4j1yF2DWIR/D56zVWNN9E7eo0rlJnJZJBy+OtMmrInLOThzaew6yHgzWV6numgTTB2W7duRd++QceAvn37YuvWrVpl1NfX47bbbsPVV1+Nrl3F1xpNmTIFd955J/ddVVUV9btuTxLeuYF+l2/WTGMmkGfxDgeA+Gqo2tptRJ58OevWrUdV1dpA+Xka6gJ1sOkWLVoEbIpH0pZtEn2zGXbWA+zwI8urrk7AsxRg2wMotElDtvB87dp1mL1vDZVub90en95Zb7+NXhUyqmh6GhoamuvOP3ezWRTkHK7/t+vmkA+TRh+vdu7Y4X/D7HdnY23HQh2Zxkbs3tUIui3z7w7V1/vffKipkGfOe7OxtoOcZhILFy5sXnLy423W22+jd/P3r9xDj8M1a9aAtMzw6v9oWyHd8o8/xhu7PsK5FcDegQm8uaXQP41EP3z80Ueo2rFMSJcuPt30Kaqqqv3fKzcXaMnbyubrnzdvLrZ9nE9zIFOgY+eu3dx52fFgDWRzEADWrP4E2+sdBMcgH/v3F+YFD/PmzvHrX7d+vV/uR35bBfuxpqamebPMp925cwd3XLB484030CldeL9z504/3/KaQhu++uqr2M6ZhySWLF6M5KeLiCcphu4CqqurQY6h2bPfwWrp9dr5sgprXoGO6upqVFVtwBpiHViyZAnKtiz206z6NLiWvvnmm+icDtbR0NDot8Hu3YW+Wjj/fdStktO3ZcsWVFV9Gnhbu61A27x5c/30O3buxGvTp0Nne+WNq/X7CnUvWrQIbrV47e4F4I4TgPWLZmP9ouB715Wv1zNmzMBHu+h29Npw6S7+XrVs2TJ02raUakcAaKiv93+/9967/jds2LgRVVXr/XQfbS2U+9Zbb/rp1hPzggd2H9heWwt6vM3GGn+8BdteNIdXEWvhrl27QbZX9f5CWTNnzkSP8nye7VsLfV9XV+fnefONNwJ1r127DlVVa4TfRYPO+/7787BzRf7vgwcPapbRwozd5MmThUyUhwULFgDgq0Zc19VSmWQyGXz5y19GLpfD1KlTpWlvv/123Hrrrf7vvXv3YvDgwQCAyspKKu1jm97Hxv11gXffn/s6ACBdlkZl5YVUnuzSGjy5Wrzp9e3bD5WVJ1HlHHHEMFReVJBKes8BoFv3bqisHMsty0t38skn4eJR/YV1muBHC94AmvKnGLY9TLB5zyHctWg29Ywsb85LH2Nu7WbqOfndXpscaGjCj+e/BQA46sgjcc5JA/Hbxe/56Xr17IE1e/cAAM4//zwc1j3AGfkgyweA8vJyVFaeW+jPdBoNDfkTWTqVRLY5dHsykcC9XzoBNz+7BHdcOgJ3/mslAKB37z5YVbcTAHDOWWdjeL/Oflnl5eXo0bMjsG+P/43eu4ryClRWngMA2FffhNsW5L/vgvPOxZCe9E7J0kzilFNPgZtz8ciqxQCA8847F4N75PN3WbMDD6740E979PCj8Nqn6/zfXpsfWPgp/rFuOQDg+FHHofL0vAnDR699gje3bPDT1mey+NH8NwEAx40ahcrTBgvpEiGTyVDmE0OGDEZl5XH+709nrweqVwMADht4GBbuqAEAjBs3HicP6Q4A2HMwg59+MBMA0L17d1RWFqT8Xludd/pJ+P7nu+Fvc6vx+JyNXFpGHHMMynccwILtNVR7iHD/mvew7dAB4fvx48fjTx/NBwAcecQwvF2Tr3fUcfk25fXjwAEDkUo6/nf27t0blZWnAKDHBYsJEyegR8cyv8xevXqhsvJUAMCOedV4fkN+fF5ySSU27jqI3yx+V0j3iaNHo5JwJPDKHEX0sddvQ4cOBWo2+WnPPvtsHEXETWPhleWteWQbDB06BJWVx+KTN9fg9c35cTn6xBNROXqgn2bdzLXAprVUmRMmTEDPTgVzAa/MZLqwFj+1ZT7WNc+7M88ojB0RfQMHDkRl5QmB9//asxjLdtcCyPfvvc3926tXL1x08Rjc+v4bwm/3wBtXi6r3+GWdMuZkTDq2n7IcEW59f4ZvJkLW5fXZxIkTUbFuD/66qsAVXjBhAnp1KkPZilo82rx2kDjhhBNQefJheHTTPGB/QaPVuWMH7GmsBwCceeaZuHvZPADA4UOHorJypJ9uz/xNeG59nluZOGECfv7B2wDoecEDuw/069cPH+3e7r8/u3mNJdPw8rPotnYnpq5YCADo2bOHPzYqKyuxett+/HHZHADA+eefjwHd8ifj+a+swPvb82O9R4/uPh9w4aRJuJ2Zl0cccQQqLzxa+F0kWLrHjR2HUw/vAYDWHqrQoozdd77zHXz5y1+Wpjn88MOxdOlSbNu2LfBu+/bt6NdPPugzmQy+9KUvYf369Xjrrbek0jogv+GWl5dz36XT1FGQ0qez74C8xJ99nkzKJQWJhMOpJ8EtHwAcR/yuUGdKmUYbxOExSpnpdFBkTZaXIOJL8erx2qSMCLKZTCaQTtNDOkmUU5ZOG9JM9wVpx8J6P11y4iBMOG4AylNJn7Ejx0cqTfeB44i/0SV+pwhtU8eKMiP606kkiAsXkE4Vvj+VpNuJ/c1Ll0oVviGRpGnP/v/23jy8iiL7/3/3XbInF5KQDZKwhJBA2BEIO4IBAi6oqCwB1FHhI/vIiMqMMC64jCOOC4MMozOCMi7oDxCjqID4AwKCkUUMIGAAQbYQAgjZ+vtHyE133+6+3X2r78Z5PQ8PN93VVaerqqtPn6pzSvDlbLVamfQ3q6TfWyxWwW9B3QrkChEsAeQ412cJADqmxSI9LhKNI8XPud3KoaqmroOH2m2i8tzdj7v1m6J+JBgD1OoqxG4V2QCF9RFSq1yeSz8X1INV0udCbO7GDnn55I5bJTHhQkK0PW9qY56wroTtDACcTAw6u8IzLhyLhc9dmAYZlcZfoVHBbmt4TiycBSEa+79s3drknzkjCHuJXD52ux12iYNAff+x2eTVA9u1tneNGSrsWzbRcdFzLGjT0BD550IOuT4iPq9eV0rnhGOcdEyOjmgYI4TPVXiIsL0b6kF4P87zVvfvaCWE7a8nD58qdvHx8YiPj3ebLjc3F+Xl5di2bRu6d+8OACgqKkJ5eTl69eqleF29UnfgwAGsX78ecXFxzGTXgu92ihXDch04M+cJJrm4X3DLcucJoWInCoR7TQYlD6q6NO6P1CNeF9fwh95gqnXBSeS3J3NJq3RO4jxRT2K0eE7b2x5tSgu1het8pD216PFBOHuxEulxdXGnpAvO7VYLqq6tt7FZLcz6OqDueSdl7vBsvLP1F8we0gZ/+0J+nlAtDz2L0A1762q4zpMu4Qi3u+QhLVPOKUCpzFqR80TDcb2e5qKyFJ6NunPm5OtJXpqvcXO+Xiapv5g4hqRKLqLQM8rOMe5g5Tyhdp1whwlRHDvRccEHv/zWE4YJaueJ7OxsDB06FA888AAWL14MAHjwwQcxYsQIkeNEVlYWFixYgJEjR6K6uhp33nkndu7ciTVr1qCmpsa5Hi82NhYhwk97QjPeis1nhLpwHJKvSIWXvtb8lPLSEhBUdScN1XGvoZKjwxoe0UYROr/6OGWPUZmkbo8LLx/XMx0HT19E/2s7f5gR6NblRa4Q30/4W/gilPbVxJgwJMY0KKTS/IUbwocw2mpKqSw1/tC3Jf7Qt6Xx/HSUxVIh1+P57Y5J/VsxkaGeWgVlQsv+y1rGPFG/A+/R0yDuzx5khPp71RmKiXOVQ+681GHMiFcsJ6x+nffqqvQaqyy1q4Qx6iqrG6Y/hB/Z7kK2+OKVGRCKHQAsX74c06ZNQ15eHgDglltuwWuvvSZKU1JScm0hI3Ds2DGsWrUKANCpUydRuvXr12PAgAEey+RlI4VhWMrJbEsxTwesaxmIYye5qhcsAxQL87KKC9YNp3KZsI7tVgt++EsewGl7CQmxcBxqFZQhl7SK4RKEFs+G4yE2C54d2V7+Gl1SqqE/J7Fip95bpdPpwvrVGwzaXdcS9UwVq6LadVqDHGuxbNVj5jZ7WnOWyvf8He0RHXbNYqfyYaJnLFKMY+eB5qS+s4zhbNnmY2hsch1bReevHZe2m5KCozbuWjX2aTU5WCLNUrjzxBWB579VZsYGkA9QzFIerQSMYhcbG4tly5apphEO5M2bN2e2/RXRALMtxTx8/Wu+2gOLnRTlqVi3RbueUzkp/RJ2qFjqpGFXpOWrxdLTgthip12ZYIGqgqLw4tAjh9xUbD16X/julwSI03ZJa4SdpecxtJ26U5O7l6u8LNoxcwrdaN5KcRyl2cmNRYq7uQgtdoIkej+WRGWpPFueTcWy+xjVdLWGRO8+0ANjlhRdS153gbT2R3RIwStfHRClcVu0B+OzWcq0EGH/aNq4wfHOKp53diL3oaTnnZkaG46j535vyNrgPQWMYuePuH3oZNrTF7om2zV2bDDji9Zdnp5aJ0SBTTVNxRorR08fiQix4eJV+XhTHCd9MXqmmKnVn/AMsz6iek7+hS8U0Z0c0vsRrrcKsRl/4Wvhw0m98HtVjdvtgjiF36rX6Oh4LC12rPbuFOepfE72OVFIX6ugLHqyxk5crNBS7GleDXhljZ1LpGHXa8Nl9kwVKizbHh+E7UfKNJUrLM6TAPJ6dvNxk1HDT5lMds/LQ1UNjwiBw4RN4cPe0x13PnioF/q/uB5Xq9Vj+rkjYLYUu57xJ8OjP8kiRWqhcjnv4Rgu9F0QT/EqyyP9q34Pykn9Wylep+cLTzhV4Fq+RAKV+1fcLk3jF7UZW+VpXqej8MXsrhql9yO22LEdGqX9xWLhdO8BadT6qlYNJhrsmC9mV1tz6Y5aBYudJ+0s6ncmvUnNbB/FMusVO+EUo1CRkWmghJgwiVVaGaUtE/XCykrq7uM3OswuCqEDSGZv3JSr552Z5AjD/X1aiKQzAlnsvAxLTzvt+GJ4UIeVRK5fbWpWKc9KFa6f0OI8Iccrd3fCtBtbIzMxCp/vlQ+urc9ip6LYcRB/jarko7hXrAFlwqy2VZpOEyIcZN3t3yttQ+FXuLF9ebWd15Oz0nWq/VxX/r4fG7Qqnq79QSa94sdSw29hv7B74hWr0RquO1+FDxVDeRmQi3P5IV1TVof0+TKy76toOy6dooarfNSajVjRNa8co3mTxc4D3NW53yyg9UfMqBuOc/2KE/zWO3BESywqSlOxV6rkzeZya79sVgvaJEWrvlDdKSRC1AY3iV6nWueKe8WKBl42yoRWjLwchJe4tdiprLHTuy+vOwxbr5TahZFlmuXYIs3K02kpQP3DQm5tqZYSRSGEtHjFasiT5ebvnig7LnkZuF5ubBIqMvX14fp8cQq/xYj37RUVrEm+2UPaYEi7RAzKFu9GxaIJtNaXHsVOrynHqNFACCl2JhIf7Rro2MhUpsdrNvxQMXT/JenBl6YApfUcarRJjEZWUjTeGNdFnL9o6kWnRUf2mHweepo7IlTlq9VFyXUdnBv+li9Vq3ebNzzUlM4ZnaKU9geh9YbV2qt61DwotSJnNXFXFgDVDmXUIqTFEsS6S7DKr0agEXriFQuNz4ZHeJjtH/PqwoGN7p7mUdFy3uYuS/MUnkP1jxBtfVrIwwMzsLigm0zsQI0ZuMigPw+zpmKl+RltfpqKNZGkGNWNSdmg0ms6pTbC3l/L0auVdwMzGyExRqoEu3kaONF/mtD6EhvcNgGzh2S5HFfbeUIOow+lnoHg+Ts64K7FW5AUE4afTlZIyuc0e4wqedYKUbNimbPGTnnqTXkdlrLyKkXahjYT19iJp1S115XStBwrJdtwH5WpXdc1TwYzF+Wh3H/lZXBfaJWgs3timTVgbNKWr0KbG+G+3s1xY1YC0iVbEQqR1mN9ie4C70rXAmuz14nxpA7NcNbRikcfBG4gi52PcdcRkxxsFDujz/bKyb2wZ/4QZ0wof0J4T2F2C76Y0d9gPuKBP0ZyrywHX4ubgc5VNmPl6JmKzUyMxvd/vgn3iRbcypevNvDWKGh2wvoNNdlT1B16DdfunFCkVldRgGIbp6tAdwqFYcuY4DKtFjs9MPWK1bHe1WgJIgxPxTYsnWAxXQyYFw/Qc69YDi3iI3XdZ4PzRAPCj6D6x0pa/UZihhr94JHK5wlG8lG71xfu6ICHBzYE2Na7rt6do4om+QxdRWhCzmLH3KtUpeEtFk51mytfIpS6a3pjmVht+js0Bw6OCDuWjO8me17rIKnURnoVO5FsMmVrWehtNG/AtQbVrFlKSpAwD28rdqpTOBqmNt3Vo9RYIwxxwtpiJ6w7fWO1YMpH47oeXfmbaORgY7FTPqfnA0hIVY1noSTqUZpGZDnEe2MZjbQa5RQs8Ro7Xv46kZKmUp7omoaU1bX62oWVhVhr4G8hwqUa0ivuuiFVdsZHKyymYkmx00izxq5KmrtO0CfD/T64UnSPVf4cf0QFIw+T6Ppr18hdeVPbROdvcZwk3cWIEK+r0HKFsQKZ7cfrMlWhjGKQY8FFwv0RvYHmIKeKaxXdWOykU7EeeMW6Qy0sjVZYR7UHjD8TPlljJzXY6fCKFVKtZd2BFnkEv9nGAxTmyyxb3eUrWYudFjuXLcUUfmvwZgaAiisN8Tg98Vb2BO1r7OS3FJND7yuaxTQvKXYaWTq+i/tE1yic0ReLxnZBLwOKnRwBqrtpxpMxUWkwGdk5BS2ieXROdQjO658eAIBm1yKOj7gWgw5gMxXLymKnlr9SiBCtU7FCvG39VXuRa1nw7D6OnUSxk3rF6uiX7pKGCZTiSh3BRxWnYtXW2Olaw2eOQnJNEM/zVPB4BuQtY1ruXegVqwUtcSWZrrGDtnZmVp6G50fY9+qHCte4xvIf61pvQRhoXYuibMaaTq2ItkJjXLBWy7wa5DyhkYRo7evlspJikJUUY6gc3Q3pzd7MEPdS69duhHm+cHsO1q4txTHdVjZXvpjZD7+ev4ILV6qcxzQpdgq/3WF0ikmt/Lq/ladilcoUXuP1qVjJ30ILnCbFzk3+rluKCS12FqZzakKLnZ6o8kasQlqcDOTy9xS1/mY4T1E7a7P8uIPdVKz87yZRrtEQDJfBLCdltNSjrFes2lSsAcF1v/oY1Y4RWc1Y7+rMW8XaqRWy2HmCgTo3MhYFqO6mitqArS8f860TESE2ZCREeTT1oie5oZkiLdNSKjIoO080/Na6zRar/irNp3FEiHxCBdw6T0jy92SvWHcI875aXeNyXqnOxBY7piIBMG/RP6C9H6i1k9rHkRbPXDmqdFrstKxhtXAc/jW+Gwa0aYInb26rK3/X8sT5ehu5ImXj2Em9abWuYVY4PqJjCvq2jsfj+RrXp7lY7BoOzB7SRlsertlowqbDwUHv/urkFXudEIxTsWpTLGpHnWdlTrMaA5Xq2537v17Md8/nJAuVlVPWaHKe8PZUrFjge7qn4uaOKXhpVEeRZEbjAbrGsbPI/maNXEDrNonRANQVSi19bv4t7XTJzlRvkOSlVympn67u2VI+PJOWNXZa0Gux0zoVO7htIt6+tzsSPAxz5W3FTovzhKjrXUsv9XUQKeEGxA61WfDO/T3wYL9WouPJjjBMH9Ta7fXCIh8emIHd8/KQphLmxRPM3HmCpmJ9jBmPXDAqce4w0nnlPI7NXo8izN3McCdmoSZOrYLFTnhY61QsszWCkr9DbVa8OrozAOC7X8oa0inc2LlLlar5S9tQuG5G7+JtPW0tZ7FbMr4bXl63Hw/0aynOV+gV66aQni1jMaFXc5fjau1hZh/Vm/V3c29C2aVKpApexnqn97Sk0bKeVAvC8cassDG+GEPqyxR9FIqWccjXn5FwJ0KU+unmOTfKRxWQ/i05YGaYLz2OdHp7G4vZAlLsvIxesyzgfwoCEzjZn5poHGE3FEldK9qmxdxLLVrs75XVMmJcFxcry6BkxBBaN7ztFauGltAK5y9XKZypQy22l5atppTkcYec80RqbAT+fncn1XxZWIld8mfYL13i2OnMOirUhijJNn5q8hkZSwGGa+wUfrPEb8Z+gRxO5wk1r1iVrPS2m+JUuAEHC6NppIimYhm3PouPBP8ZqQkA8p0sGK14Rvpu74w4RIZY8c2fBmpe78US4QPMIvSEVwZtkXKpjJLzhFAJYb1/qltUBFa7F636j3QAFYauMzPcgtLewnJI13EZQW34YLrHqfRDgrXzhCQ/+b1ixWm6N48FULcLTz26p2I1pDHLu9gXa+yccgh/C/5QClCslF7rHei9VReLnUxJ2rLUX8d6pkv1vr9ZTPOSxc4DjFS6uzYORiVODvEgoK0il93fA1U1vKJSZ+a6O2leepvJH7681WRQCg56VfAS1GrFYuY8oXVYliRrkxSDfScuuL1OqpwPzUnGe9uOAtC/xk6PEiM3FasFUyx2BhtL02WsxZXkp8V54o1xXfDhjmO4o0sz5zFGM7GijyGWHwIslHkW5StVU329u3wMqijhZuDLcCc20VSsesGe7DxhFLLYET5HexgHTrelzoiirOUaLdMJoXYrhuUkoW/reGcsPG+i9kUrlV/JiKEn5hor+mfWxX+854ZUxTTiLiO+01dHd0Z6XAReuLODajlCC92Xs/rBLgxQbOFYRjsRoSvcCWOHHSlmBsBl/aKVZqflOY2PCsWk/q3QJNp4CBKl2xAGOjajbQDvKCvCalxwe3vZDzihGPX1LlWQxWvsIPvbTLypAovam3HB4p0njGVOFjsPMOOrxB8sO95A/MJilKfJj7awbbR+9S8a19UcYTSiFPtNipLzhC8UuyXjOqOSt7istxKitsA8IyEKG2cPdFuO+IOCE72ozXTEuVJlzGLn7gNI0TtYLZyI0eldDf2fRQ2K94IW53hv7xZYXlTKvEwpSrcqtFix3IJOPBXLLFtN3Nm1mexxue0IVQx2btbYif8e3j4Zh85cQrf0xprlrCtDyxo7NuvwpOhR5D3ZeYKmYoMEo9vkBBrCW2I1KJoVP815XCA1qyDCZqK6O4HknFK4E18odhzHISrE/KFJupZFOh2tpzvp84o1VqfeXuKoFxcLMeOBS5pbRkIUfvzrEIxfus3pJe2NnRrqqTHNYqeszJqNUmmi486xQiWOnQ6xXx/bBTzP675Xl+RerCqrjqlYvag5dWnOg4EchMkEgA7hEWZNY7BG7/Mb5k0HDw2yiRdAizuVkot9ZY0x65LZGHyHiJAOyC57WhrM1x1X9ThPiKw3/vOcaBFF62OtVs/itbiu5yNCbD778BUqdqwDWtfjyxZX2o6wwStWnF7N0UWUr+zaSP13qrbURCmNHK2aROku26Zjr1i9iLcrM5YHWew8wFClB7mSphUzwjiYPQiKBzflhnz6thy8t61UV/Rzs9AScuUfozvjuyPnZM/5wmKnF6NWDem2QH1ax6N7i1i0TTa2HaBWruhwntATx04JM4aczGsBlYUY9YplGWfPm4qQULHTa2WZPKAVBrZJkD3nS2VeeZcN1/W50mYTLTsT/fbOPcgWo6FoR7gdRY8PQpjNioff3ampLKH13F0Rep8/Fu9DUuwIn8DihWUWijtPCKdiVfSdcT3TMa5nOmOp9OM6NSb83fDHiPbJKDp0VjaPZo3NidzuKVrX86hhkdSH3WrB+w/leiyPEg/1b4nFGw/hLyO0bzlldhw7vRTO6IsjZy6jq8x6KE/j2Mkhbmdz1ksp0S+zCb7ZfxrjFZ5lnTuTiXh0qPK2WcJb8M7OEwLLnFAOBctRfWrXj1tO5pdcee5lGtsjHf/+/w+jX2YT5UQMqyZR524hVoHFzv2WYvpkEYVSIeeJwMCd67Of6TimIbxPVtMYZtedeHALPNOrsHqk0yxKFsjR3dPwa/nv6N9aZYD1ASysAExfmhrymjM0Cw/0bYl4g5vEu1PslNeGsiMrKQZZSeZaNJXQsvaVJW9NvAFnL11FQrT8S79G7euOEd5+H2gpj1eYihXn45ngc4ZloV9mPG64FodQtgzph4RHJerDZtGmxNah713BwnmC1th5gBkPnRbtfmi7JPYF+xCrTAwoI3XLaoDX8oJkEQvL9C3QOMlUrNI0C8cpbrMUYrPgsWHZ6JURr71cL68MMlqN0qlYs+E4TrdSp8d601uhjXz1CcLEYsfpayOWz5TVwikqdQC7rcmkKFnKzEK8n7TrlKtSelVvaw9lCrFZMKBNAiLVPOOlU/8ylaVXDq0f7OIAxWwbiXaeuE5ZNK6Lr0VgitwuDsz2GzXJKGN0OyNfolYVg7ITvSYHa4wqkkpxt/wJ8VSsfJrZQ9rgxTs74IG+LeUTeICubm5wjZ1qlizm3BXwNKiwWQY7b0/FakFu7FN1elER26yR02cWO8YFs/jgJMXOA4wMXCz0AW+7wJuBKc4TpleL8GvW7LLYo1Y/eW0T0aOF8rSHHrw9TW3cYsdQBnZZifMV3JzSS75po3CM6pbqk232hKit6WSRp+J4a7Cc1gmuDiB6UNqthSXeGOo1WULlxj6NXrHS/Jl9tLPJxhBmxrETOWbQVOz1xfAOyQCAyf3Zf6V7A+GDL7fGzh91V7kFxB7lxyAP9fw5xWkWl7Qch54t40yWiB0s+geLCO/exOgHkCcvUk/qmUWNCndBYDUmrJ7SB8M7JGNxgWfBwz1xnlDD216x2vbCrXvnhNutuL1LUwBuYnmaaGltkEmyxk6mHLOMICz2CleCRZuT84SXYTUWvHpPZ8wdno1kh/e3qmKNP3j7aUG8xi4ATXZuCJR2ANgoYoFwv0IJleT1F0ce6UuUxQsqOoz9K6p9MwdeH+P5chal3Vo8RW1XFV/BAXhtdGdU1/LOfZSNTsUyk0nD1H+yIwwHT13UnKfWYV24Ltzdu0D/zhNCe5vBZSaGriIAeN552zd1GF7nYbFwAa3UmTMV61k+zePqQnsMy0l2m79JYzpT9FYHKz0nUJwnWK6xk7ueibe3l603Unxl7asnOszekJ9CmlAfTUGb5TwhxBvPktY2rg8JVE+n1EYA4Nz6T8lIly3xomb1IeJSMzJV9fwdHTA4OwHL/9CDSZn1CC127hR8vffLYiMmsth5GWHf+/8e7g0eQKvH1/pKHJ/hzhJh5IUiNwTq2X+wcEY/nLl4VTF2mzB/Fs4TXvF40yFnIK3dFIpqN7hYzl1QWV11J3MsPioUJy9c0SmVMoanYplJoI7rGjtt8qrJJ7TYKeWXnRyDTQfOaCqLJd6w2vuLUVmu7hfe0wlvbjyEMT3SZNOvmdoH35eW4ZaOKd4QUZaURuH414QbNKdvEq3Na134LLrT7/WvsfP8g5MUOy8jbOP6F8tHk3Nxx6ItvhHIRwgHCjOnxDqnNsL7D+UiNda9dTPMblUNyKt154lAJRCmJusRWktCDCp2Zq2TubVTCjo0a4R/bTrkcV5Ci42Z63pYYIZ4MSLFTj5NlzTtH28sMctiJ7TweMNKq1SEaH2uzPmE6DDMVQi2zQHIaepATlOHp+Ip4hruxPM85w5viwu/V2FsD/UA8zaRYse2H4i2FDOYByl2fkDXdDbeiIGK3AvLUBw7hWu6M/L2FL5kG4WHMMnTnwggvQ5VNQ0eiUa9QZW2QPKUV+7pDABY8g0DxU44Fau0xs7Ne6VlfCST8n1BjGAqVolB2QnonRGnGnPODExT7ESxJ00pQrE8JfTKoRruhFm1cSp/GaNJdCjeure723RWExU7vdvTyebBQA5CB0Fo6DGEaCrWw3hScnmagXCwmnlTpsf55XrBC1VPd/OXmFlaEO5ha3SNlbsBVM/UtFnT2OIlC/qu/WhyLu65IVXXFmZSfD1eCdfYXa6U32PXbrVg+R964uW7O3lJqjpqTKocrZ7s3kSLHOJg0t63NHqzroRl9bu2K4+So4/eXmJjEPyYLHYe4C8PXSAicp4IwHqMiwzB2B5pWF5UajiP+/q0QOOIENPCjOit1lZNokyRwwyEFjsbg6lYuXe0p+soWXdrJcU7SiE6f9f0WK/OBpjxFIfZG9q24kqVCSUYxzyLnXAq1pQipCUyzzEAh3TDZCZFY8MjAxCvsD5P916xNBUbePhLaAJfY8YaO28q2haO81huu9WCu25Idf79zMgcPPHxHjyRn607ry5pjTySBQAGtGmCv97aDtnJvtkLVA9VDIKICS12vrZMKaHmPT7/lnb44dj5gN41xB3CZ/rilWofSuKKeWvsGiDjgXa8XVN3dm2G0nOX0bFZI9V3gd53Pov3ISl2HkCPHBuYhIWA+V+JosjqHPupy7E90jGiQwoc4e7XFUnJSIjGmql90CjCjj7Pr3ce16OwcByH8bnNdZftC65Wex71X9jtzJhWY7LLjGCUkfa3Cb2ae16ADCFWCypr9Nev2UpI+2bmLcQ3gjfW2AXSulchvvD497YO/LdRHU3Jl4VXbMCssSsrK0NBQQEcDgccDgcKCgpw/vx51WvmzZuHrKwsREZGonHjxhg8eDCKioq8IzChGWYWOya5qOQv3N7JwpmyJs2IUldPTlOHaAG5r3ZT8MYAa0TxkMJyAbRZt+ztXQgAICLU6pVytLL1sUH4aHIvtEu5PhQ7eNkrlhWc6LeKBYvRR5R0CAiE3WO0wKLNA0axGzNmDIqLi1FYWIjCwkIUFxejoKBA9ZrMzEy89tpr2L17N7799ls0b94ceXl5OH36tJekdsVfp3x8CQsvIACmaxTC3C0c271GWaG1CgK9G1ZWyy+k14NFtMbOv9bTyeGtcDTj3IR68DZJjjB01RGP0ltotfLe0Lwx2upY3uA37wgfB6d2R8CEnPIgjp3RWwyIqdh9+/ahsLAQW7duRY8edRGklyxZgtzcXJSUlKBNmzay140ZM0b099///ncsXboUu3btwqBBgzyWK4A+pvwaVlOxZiO1njBTSE2iTt4AGfx0UslkKlZosfM4OxdYrKf1xCtWL5P6t0L3Fo3Rt3UTvLb+IAAgUsExgyWsLDjeRqvF7onhbdEptRGaz/lUU3pRrFNv7BVrQvWrSc2qPOmOD8HyPhYqdkaXiASEYrdlyxY4HA6nUgcAPXv2hMPhwObNmxUVOyGVlZV488034XA40LGj8tz41atXcfXqVeffFy5cAABUVVWhqkrslSUckKTnlKipabA0yF1Ty9e6HK+tdT3mDzCTSeGe9ZZTW1PjTCv9nwXV1Q2Lt2uqq8EZaH+zqRbMT1RXV6O6Wr6/1QjuhbXs1dU1hvLU02ZCxc6o/MIXQ2Wl6/MtPO+uDNmxQDAmG5ex4T55BuNAjcpzFWHn0LdVLFBbgz8Pz8Ke4+Xo16qx2zLrz/O1DX1t4V0dNMsaZrP4zfOjhxo3/eOrmX1wrOx3tEuKRFVVFTiuQalRu1/xc1qFKp69Ri981qoV3knVNfrGCOH4WF1dDb5WXtNSKk8vldViZ5rqqipUwfMPPtbU6HxuawX1LhyX9OQREIrdyZMnkZCQ4HI8ISEBJ0+eVL12zZo1uOeee3D58mUkJydj3bp1iI+PV0y/YMECzJ8/3+X4+vXrEREh3pXg9CkL6mez167Vti3YnpMcAKvMNXVNcerUKcHxumOHDh/G2rU/a8rffBq6jNZ7dpfX7l27EHbiB9GZo6V66rYun71792Dtmd2iM+vWrfNQxgbKKxvK+vrrr3DohP72N5u6d02djJs2bcKZK/L97ccypX7oCXXl7tmzG2tP7zKci5Y2O1tmRb1dwKj8vKCuNm7ahJ8lcXyP/6q9fcvOucpz5YrnMh482iDDd9u34+IBz8wdP56Qa/e6OigpKcHaSz8BAOIBDAgHCguPas77wIEDzry5ozux1s2lo1tx+OaEBb3Cf8Xatb/quAv/oKpKW/uuLbn2g9eW/tdLQH2bFBYWmupAsW7dOhSflR8L9uocI0ovAvVyf/bZZ4pyHzjGZuzZd74hHwD4/PPP4aNtgxWoq4tjx49jrbuHQUBduMZr49I332D/NbXj8uXLOkv2EfPmzZNVooRs374dgLzHFc/zbj2xBg4ciOLiYpw5cwZLlizBXXfdhaKiIllFEQAee+wxzJo1y/n3hQsXkJqaioEDByIuThxv7OOzO/Hj+bo9CvPz81XlqKds21F8cHifyzXTt3wBoE5Zzc/vIjo2uHsO8rs105S/2dTLBGi/Z3d5dencCfkdkkXntqz6EfjtmKZy6vPJyclB/rXwIVVVVVi3bh1uuukm2O3GHRKE/HbhCv6y4xsAwODBg3Fyaym+OH5Ik4zeoqaWx8ytdYpRv759cfjsZWB/ndIslDFy/2ks/ul7l+OeUN8O7du3N9Rf9bTZy/u/BX6vG+g8kX/G1jqZ78wfjNhI8W4iX36wCzvOnNRUxju/bgMqzovSPrtnI8qrrnok48GvD6LwWF0fy+3Z3eOg1me2luKjIz+JZKpvt9aZbZA/oKXuPOvbrXVmJlD6syhvNfzjiTHOI9vWAdfC7mi53xlbv3BacdXS/3SyAs/vqtticnj+MFO8jYXPGldyFm/t3+UiV8T+03hTxxix+3g5Xtpd5FbusJLTWLvM87EnYv9pYN/3zr+HDB1qOFi5GdQ/V01TmiI/v73m665W12L2ti8BAL379EVWUjSAhtlDLfhUsZsyZQruuece1TTNmzfHrl278Ntvv7mcO336NBIT1WM4RUZGIiMjAxkZGejZsydat26NpUuX4rHHHpNNHxoaitBQ10CDdrvd5WVjsVhE57VgtTZ8Ychd0zgy1Hn8o8m9sPXQWYzu0dwv9/FkpTCFMqpbm9Xmklau3YxiszVMIYTa7bDbGh4fVmV4ilUwPWSz22BT6G9WE2Vv2STaozy1tJkwjp0nZX31x/74vbIGiY1ct92y6uiDFs417RvjuuLet7bhieHZhmUUjhchDPqy2j1ZLRaP8rda9T+zgYxwKlbv/aqlDw9t+MAICTF360K7yjhms+obI2yCfNTkzmuXjJfvrkV2coxH/cRiEXtvh9jtsPuRYlcPZ+F03SdnqRX8tjqv1ZOHTxW7+Ph41WnRenJzc1FeXo5t27ahe/e6fdyKiopQXl6OXr166SqT53nRGjpPYKlqvTq6M94tKsVjwxqC03ZNb+yX3mCskVNajdSt2YtnpZtz+6NXrBBvu/+//1AuSn6rQG4r87dKYxHuBFDfbUPXpKdMVXdNb4ziv+R55GQjbEOzP+48XdMeLOEmtGJWtJNWTSJxV7dmiI2U38mANd52XeE4DiM7ez4DJXVeCUbnCaOevwGxxi47OxtDhw7FAw88gMWLFwMAHnzwQYwYMULkOJGVlYUFCxZg5MiRuHTpEp555hnccsstSE5OxtmzZ/HGG2/g2LFjGDVqFBO5DA20Cg11c8cU3NwxxUOJAhN/tEbKIWo6zj+jwktF8uag3b1FLLq38M4WVlWMFDuzYek5bbaHZIA6pwYMHLQ9jxzH4YU7zQl+qwe9Xt3eVuylirX/jcZ16H2uOAbe+n5uc2hg+fLlaN++PfLy8pCXl4cOHTrgnXfeEaUpKSlBeXk5gLopjJ9++gl33HEHMjMzMWLECJw+fRqbNm1Cu3btmMg0d3hbpDjC8GcPNtkmAifciXirH+CubqkItVkwQrI+0JdIlc1gfVmzCHfCEm8EKDb7A8jT7P3wO4fQQKCOEYESx84TKY2+GwPCYgcAsbGxWLZsmWoaYciBsLAwrFy50lSZ0uIisPkxffHwAqMrKmO3cqiq4ZEWG+E+sUbkXlhG6sns94qwf3EAmkSHYs/8IX6rmMZGhii+bPUETPVH/E6xM6kLiOLYmVTI/w1ohbW7T3i8nZx/PgWEt2iVULdO1VszMK5TscHTA/9vQCscP/872qUYG6cDRrEj/INPHu6N19cfxCN57mMHaoXZlmJmr7ETjCP1g4jdDxfa/e/BnrhcVYMm0aG4MSsBLeMj0Sm1kShNYkwYvv5jf0SHBeYi92rTtnMyRttkB7YeOsc8X1FQbJO62p+GZuFPQ7PMyZxwEma34nKl5zumsEZp3NQ7tRoRYsMPT+YhxEtjotS44K9qnZEA3J4+j/73VgpybGaNzl6iXYoDb4ztipYqi871ktIo3OWYvz6k9fizfD1axmFgm7pwPmF2K776Y3/8/e5OLulaNolCk2jvLNBmzZsFXQEAL9zRwbQybmiufb3gH/My8X8DWmHN1D6myRMoa1EJed65vzuaNQ7HkvHdfC2KCCW9w8jOKY5wO8JDvLPXcMfURpjUv5Xz7yAy2HkMWey8zMjOTfHetlL0ae3eGzjYee+Bnjh76SpaxLuGmjCC2Yt3GwvinIX4oVu9EsE0RVFPXrsk7H96mKntMLp7GkJtFk0OIZGhNlOsXo5wQYgaP2/Hni294zgTqHRNj8W3j97oazFcaB7PblmNt5kxuDX+udFfgvfL44u5BVLsvEx4iBWrTfyqDyTUwmLc27s5lheVIr99kub8cpo6WIilSFSoDYUz+sLKcX45BXu9YbZybbVwGNUt1dQy3HFr56b4dPcJ/HbhKlIZrGsdlJ2Ieat/RLPGrlZyT2mbHIM1U/sgyRHGPG9/5L0HeuKJT3bj6dtyfC2KR7RLceD1MV3QVNInEqL9vx3D7FbsmpcHm4Xzuw/YpJgwnLxwBcNytL/DWEGKHeGXZCREY+/8IYjQYNb/ZvZAHD//O9oaXGiqh6ykwHY6IAKLmDA7VjyYq2mXHS2kxkZg+xODERNuztBv9seVP5HbKg5f/3GAr8VgwnAZz/6cpg48eXNbNGvs3xa9GD9dJ/z5zH448FuFT2LRkmJH+C2Rodq6Z1pcBNLi/HvwIQhPYGmNCNR1lYT3ubd3C1+LELA4wu3opmOdLktoPokgCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJICBjFrqysDAUFBXA4HHA4HCgoKMD58+c1X//QQw+B4zgsXLjQNBkJgiAIgiB8ScAodmPGjEFxcTEKCwtRWFiI4uJiFBQUaLr2k08+QVFREVJSUkyWkiAIgiAIwnfYfC2AFvbt24fCwkJs3boVPXr0AAAsWbIEubm5KCkpQZs2bRSvPX78OKZMmYLPP/8cw4cP95bIBEEQBEEQXicgLHZbtmyBw+FwKnUA0LNnTzgcDmzevFnxutraWhQUFGD27Nlo166dN0QlCIIgCILwGQFhsTt58iQSEhJcjickJODkyZOK1z3//POw2WyYNm2a5rKuXr2Kq1evOv8uLy8HAJw7d06HxISvqaqqwuXLl3H27FnY7XZfi0NogNosMKF2CzyozQKPiooKAADP827T+lSxmzdvHubPn6+aZvv27QAAjuNczvE8L3scAHbs2IFXXnkFO3fuVEwjx4IFC2RlyszM1JwHQRAEQRAEayoqKuBwOFTTcLwW9c8kzpw5gzNnzqimad68Od59913MmjXLxQu2UaNGePnll3Hvvfe6XLdw4ULMmjULFkvDbHNNTQ0sFgtSU1Nx5MgR2fKkFrvz588jPT0dpaWlbiuT8B8uXLiA1NRUHD16FDExMb4Wh9AAtVlgQu0WeFCbBR48z6OiogIpKSkivUYOn1rs4uPjER8f7zZdbm4uysvLsW3bNnTv3h0AUFRUhPLycvTq1Uv2moKCAgwePFh0bMiQISgoKJBVBOsJDQ1FaGioy3GHw0EPQAASExND7RZgUJsFJtRugQe1WWCh1bgUEGvssrOzMXToUDzwwANYvHgxAODBBx/EiBEjRB6xWVlZWLBgAUaOHIm4uDjExcWJ8rHb7UhKSlL1oiUIgiAIgghUAsIrFgCWL1+O9u3bIy8vD3l5eejQoQPeeecdUZqSkhKnswNBEARBEMT1RkBY7AAgNjYWy5YtU03jbrmg0ro6NUJDQ/Hkk0/KTs8S/gu1W+BBbRaYULsFHtRmwY1PnScIgiAIgiAIdgTMVCxBEARBEAShDil2BEEQBEEQQQIpdgRBEARBEEECKXYqvPHGG2jRogXCwsLQtWtXbNq0ydciXbcsWLAAN9xwA6Kjo5GQkIDbbrsNJSUlojQ8z2PevHlISUlBeHg4BgwYgL1794rSXL16FVOnTkV8fDwiIyNxyy234NixY968leuWBQsWgOM4zJgxw3mM2sw/OX78OMaNG4e4uDhERESgU6dO2LFjh/M8tZv/UV1djblz56JFixYIDw9Hy5Yt8de//hW1tbXONNRu1wk8IcuKFSt4u93OL1myhP/xxx/56dOn85GRkfwvv/zia9GuS4YMGcK/9dZb/J49e/ji4mJ++PDhfFpaGn/x4kVnmueee46Pjo7mP/roI3737t383XffzScnJ/MXLlxwppk0aRLftGlTft26dfzOnTv5gQMH8h07duSrq6t9cVvXDdu2beObN2/Od+jQgZ8+fbrzOLWZ/3Hu3Dk+PT2dnzhxIl9UVMQfPnyY//LLL/mDBw8601C7+R9PP/00HxcXx69Zs4Y/fPgw/8EHH/BRUVH8woULnWmo3a4PSLFToHv37vykSZNEx7Kysvg5c+b4SCJCyKlTp3gA/MaNG3me5/na2lo+KSmJf+6555xprly5wjscDv6f//wnz/M8f/78ed5ut/MrVqxwpjl+/DhvsVj4wsJC797AdURFRQXfunVrft26dXz//v2dih21mX/y6KOP8n369FE8T+3mnwwfPpy/7777RMduv/12fty4cTzPU7tdT9BUrAyVlZXYsWMH8vLyRMfz8vKwefNmH0lFCKkPRB0bGwsAOHz4ME6ePClqs9DQUPTv39/ZZjt27EBVVZUoTUpKCnJycqhdTeThhx/G8OHDXbb4ozbzT1atWoVu3bph1KhRSEhIQOfOnbFkyRLneWo3/6RPnz746quvsH//fgDADz/8gG+//Rb5+fkAqN2uJwImQLE3OXPmDGpqapCYmCg6npiYiJMnT/pIKqIenucxa9Ys9OnTBzk5OQDgbBe5Nvvll1+caUJCQtC4cWOXNNSu5rBixQrs3LkT27dvdzlHbeafHDp0CIsWLcKsWbPw+OOPY9u2bZg2bRpCQ0Mxfvx4ajc/5dFHH0V5eTmysrJgtVpRU1ODZ555BqNHjwZAz9v1BCl2KnAcJ/qb53mXY4T3mTJlCnbt2oVvv/3W5ZyRNqN2NYejR49i+vTp+OKLLxAWFqaYjtrMv6itrUW3bt3w7LPPAgA6d+6MvXv3YtGiRRg/frwzHbWbf/G///0Py5Ytw7vvvot27dqhuLgYM2bMQEpKCiZMmOBMR+0W/NBUrAzx8fGwWq0uXyinTp1y+dohvMvUqVOxatUqrF+/Hs2aNXMeT0pKAgDVNktKSkJlZSXKysoU0xDs2LFjB06dOoWuXbvCZrPBZrNh48aN+Mc//gGbzeasc2oz/yI5ORlt27YVHcvOzkZpaSkAetb8ldmzZ2POnDm455570L59exQUFGDmzJlYsGABAGq36wlS7GQICQlB165dsW7dOtHxdevWoVevXj6S6vqG53lMmTIFK1euxNdff40WLVqIzrdo0QJJSUmiNqusrMTGjRudbda1a1fY7XZRmhMnTmDPnj3UriYwaNAg7N69G8XFxc5/3bp1w9ixY1FcXIyWLVtSm/khvXv3dgkltH//fqSnpwOgZ81fuXz5MiwW8SvdarU6w51Qu11H+Mhpw++pD3eydOlS/scff+RnzJjBR0ZG8keOHPG1aNclkydP5h0OB79hwwb+xIkTzn+XL192pnnuued4h8PBr1y5kt+9ezc/evRoWVf+Zs2a8V9++SW/c+dO/sYbbyRXfi8i9IrleWozf2Tbtm286dktFwAAC1hJREFUzWbjn3nmGf7AgQP88uXL+YiICH7ZsmXONNRu/seECRP4pk2bOsOdrFy5ko+Pj+f/9Kc/OdNQu10fkGKnwuuvv86np6fzISEhfJcuXZyhNQjvA0D231tvveVMU1tbyz/55JN8UlISHxoayvfr14/fvXu3KJ/ff/+dnzJlCh8bG8uHh4fzI0aM4EtLS718N9cvUsWO2sw/Wb16NZ+Tk8OHhobyWVlZ/Jtvvik6T+3mf1y4cIGfPn06n5aWxoeFhfEtW7bkn3jiCf7q1avONNRu1wccz/O8Ly2GBEEQBEEQBBtojR1BEARBEESQQIodQRAEQRBEkECKHUEQBEEQRJBAih1BEARBEESQQIodQRAEQRBEkECKHUEQBEEQRJBAih1BEARBEESQQIodQRAEQRBEkECKHUEQpjNgwADMmDHD12L4FRMnTsRtt93mUR7NmzfHwoULPcpjw4YN4DgO58+f9ygfNebNm4dOnTqZlj9BEA3YfC0AQRCElA0bNmDgwIEoKytDo0aNfC2O37J9+3ZERkb6WgyCIPwIUuwIgiAClCZNmvhaBIIg/AyaiiUIgimXLl3C+PHjERUVheTkZLz00ksuaZYtW4Zu3bohOjoaSUlJGDNmDE6dOgUAOHLkCAYOHAgAaNy4MTiOw8SJEwEAhYWF6NOnDxo1aoS4uDiMGDECP//8s6o8H374Idq3b4/w8HDExcVh8ODBuHTpEoA6i9dNN92E+Ph4OBwO9O/fHzt37hRdz3EcFi9ejBEjRiAiIgLZ2dnYsmULDh48iAEDBiAyMhK5ubkiOeqnHhcvXozU1FRERERg1KhRqtOdPM/jhRdeQMuWLREeHo6OHTviww8/VL036VQsx3H417/+hZEjRyIiIgKtW7fGqlWrRNesXbsWmZmZCA8Px8CBA3HkyBGXfDdv3ox+/fohPDwcqampmDZtmrPO/vvf/yIqKgoHDhxwpp86dSoyMzOdadxx+PBhZGRkYPLkyaitrdV0DUEQ2iDFjiAIpsyePRvr16/Hxx9/jC+++AIbNmzAjh07RGkqKyvx1FNP4YcffsAnn3yCw4cPO5W31NRUfPTRRwCAkpISnDhxAq+88gqAOqVx1qxZ2L59O7766itYLBaMHDlSUTk4ceIERo8ejfvuuw/79u3Dhg0bcPvtt4PneQBARUUFJkyYgE2bNmHr1q1o3bo18vPzUVFRIcrnqaeewvjx41FcXIysrCyMGTMGDz30EB577DF89913AIApU6aIrjl48CDef/99rF69GoWFhSguLsbDDz+sWG9z587FW2+9hUWLFmHv3r2YOXMmxo0bh40bN2qs+Trmz5+Pu+66C7t27UJ+fj7Gjh2Lc+fOAQCOHj2K22+/Hfn5+SguLsYf/vAHzJkzR3T97t27MWTIENx+++3YtWsX/ve//+Hbb7913t/48eOd+VZXV6OwsBCLFy/G8uXLNU0L79mzB71798aoUaOwaNEiWCz0GiIIpvAEQRCMqKio4ENCQvgVK1Y4j509e5YPDw/np0+frnjdtm3beAB8RUUFz/M8v379eh4AX1ZWplreqVOneAD87t27Zc/v2LGDB8AfOXJEk/zV1dV8dHQ0v3r1aucxAPzcuXOdf2/ZsoUHwC9dutR57L333uPDwsKcfz/55JO81Wrljx496jz22Wef8RaLhT9x4gTP8zw/YcIE/tZbb+V5nucvXrzIh4WF8Zs3bxbJc//99/OjR49WlDc9PZ1/+eWXFWW9ePEiz3Ec/9lnn/E8z/OPPfYYn52dzdfW1jrTPProo6K6Ligo4B988EFROZs2beItFgv/+++/8zzP8+fOneObNWvGT548mU9MTOSffvppRRnr66Njx4785s2b+djYWP7FF19UTU8QhHHoU4kgCGb8/PPPqKysRG5urvNYbGws2rRpI0r3/fff49Zbb0V6ejqio6MxYMAAAEBpaanb/MeMGYOWLVsiJiYGLVq0UL2uY8eOGDRoENq3b49Ro0ZhyZIlKCsrc54/deoUJk2ahMzMTDgcDjgcDly8eNElvw4dOjh/JyYmAgDat28vOnblyhVcuHDBeSwtLQ3NmjVz/p2bm4va2lqUlJS4yPnjjz/iypUruOmmmxAVFeX899///tftVLMUoayRkZGIjo52TnPv27cPPXv2BMdxIrmE7NixA2+//bZIjiFDhqC2thaHDx8GUDdFvnTpUixatAitWrVysfrJUVpaisGDB2Pu3Ll45JFHdN0TQRDaIecJgiCYwV+b4lTj0qVLyMvLQ15eHpYtW4YmTZqgtLQUQ4YMQWVlpeq1N998M1JTU7FkyRKkpKSgtrYWOTk5itdZrVasW7cOmzdvxhdffIFXX30VTzzxBIqKitCiRQtMnDgRp0+fxsKFC5Geno7Q0FDk5ua65Ge3252/65UiuWNq68Xq0wiVqnrqr/v000/RtGlT0bnQ0FDFPOUQylVfXn3+WtqntrYWDz30EKZNm+ZyLi0tzfn7m2++gdVqxa+//opLly4hJiZGNd8mTZogJSUFK1aswP333+82PUEQxiCLHUEQzMjIyIDdbsfWrVudx8rKyrB//37n3z/99BPOnDmD5557Dn379kVWVpbTolRPSEgIAKCmpsZ57OzZs9i3bx/mzp2LQYMGITs7W2R9U4LjOPTu3Rvz58/H999/j5CQEHz88ccAgE2bNmHatGnIz89Hu3btEBoaijNnznhUB/WUlpbi119/df69ZcsWWCwWZGZmuqRt27YtQkNDUVpaioyMDNG/1NRUJvLUlyNsGwAuf3fp0gV79+51kSMjI8PZLps3b8YLL7yA1atXIyYmBlOnTnVbdnh4ONasWYOwsDAMGTLEZR0jQRBsIMWOIAhmREVF4f7778fs2bPx1VdfYc+ePZg4caJogXxaWhpCQkLw6quv4tChQ1i1ahWeeuopUT7p6engOA5r1qzB6dOncfHiRTRu3BhxcXF48803cfDgQXz99deYNWuWqjxFRUV49tln8d1336G0tBQrV67E6dOnkZ2dDaBOEX3nnXewb98+FBUVYezYsQgPD2dSF2FhYZgwYQJ++OEHpwJ51113ISkpySVtdHQ0HnnkEcycORP/+c9/8PPPP+P777/H66+/jv/85z9M5AGASZMm4eeff8asWbNQUlKCd999F2+//bYozaOPPootW7bg4YcfRnFxMQ4cOIBVq1Y5lbeKigoUFBRg6tSpGDZsGN599128//77+OCDD9yWHxkZiU8//RQ2mw3Dhg3DxYsXmd0bQRB1kGJHEARTXnzxRfTr1w+33HILBg8ejD59+qBr167O802aNMHbb7+NDz74AG3btsVzzz2Hv/3tb6I8mjZtivnz52POnDlITEzElClTYLFYsGLFCuzYsQM5OTmYOXMmXnzxRVVZYmJi8M033yA/Px+ZmZmYO3cuXnrpJQwbNgwA8O9//xtlZWXo3LkzCgoKMG3aNCQkJDCph4yMDKcHal5eHnJycvDGG28opn/qqafwl7/8BQsWLEB2djaGDBmC1atXO9cRsiAtLQ0fffQRVq9ejY4dO+Kf//wnnn32WVGaDh06YOPGjThw4AD69u2Lzp07489//jOSk5MBANOnT0dkZKTzunbt2uH555/HpEmTcPz4cbcyREVF4bPPPgPP88jPz9ccIoUgCG1wvJZFFwRBEIRm5s2bh08++QTFxcW+FoUgiOsMstgRBEEQBEEECaTYEQRBEARBBAk0FUsQBEEQBBEkkMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJIIMWOIAiCIAgiSCDFjiAIgiAIIkggxY4gCIIgCCJI+H+FdQpjKKsNegAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot data\n", + "plt.plot(np.arange(N), y)\n", + "plt.xlabel('data sample index k')\n", + "plt.ylabel('y[k]')\n", + "plt.title('ground truth data')\n", + "plt.xlim([0, N-1])\n", + "plt.ylim([-0.4, +0.4])\n", + "plt.grid(True)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ababb1d5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "empirical risk: 0.003427800540873722\n" + ] + } + ], + "source": [ + "# simple linear model, train with full data set\n", + "x_left_inverse = np.linalg.inv(x.T @ x) @ x.T\n", + "w = x_left_inverse @ y # get weights via left inverse = train the model\n", + "y_predict = x @ w # predict = forward propagation\n", + "\n", + "# get residual e, loss L & empirical risk ER\n", + "e = y - y_predict\n", + "L = e.T @ e\n", + "ER = L / N\n", + "print('empirical risk:', ER[0, 0]) # 0.003427800540873722 = 3.427800540873722e-3\n", + "# non-linear model in homeweork task has ER = 5.7457115873891e-5\n", + "# so it might explain the data better than the simple non-linear model\n", + "# in fact the ground truth data y=f(x) originates from a non-linear function f\n", + "# hence a linear model must somehow fail to do a good prediction job" + ] + }, + { + "cell_type": "markdown", + "id": "4bf605e0", + "metadata": {}, + "source": [ + "## Copyright\n", + "\n", + "- the notebooks are provided as [Open Educational Resources](https://en.wikipedia.org/wiki/Open_educational_resources)\n", + "- the text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/)\n", + "- the code of the IPython examples is licensed under the [MIT license](https://opensource.org/licenses/MIT)\n", + "- feel free to use the notebooks for your own purposes\n", + "- please attribute the work as follows: *Frank Schultz, Data Driven Audio Signal Processing - A Tutorial Featuring Computational Examples, University of Rostock* ideally with relevant file(s), github URL https://github.com/spatialaudio/data-driven-audio-signal-processing-exercise, commit number and/or version tag, year." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "myddasp", + "language": "python", + "name": "myddasp" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/index.ipynb b/index.ipynb index f577def..3817e2b 100644 --- a/index.ipynb +++ b/index.ipynb @@ -27,6 +27,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "# Homework Task Template\n", + "\n", + "- [Homework Task Template](homework/homework.ipynb)\n", + "\n", "# Planned Syllabus Winter Semester 2024/25\n", "\n", "- [Numerical Examples from the Slides](slides/ddasp_exercise_slides.ipynb)\n",