-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArticle.tex
18 lines (18 loc) · 1.46 KB
/
Article.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
\documentclass[10pt,a4paper]{book}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\begin{document}
\chapter{Axioms}
\begin{enumerate}
\item $\mathbb{C} \supset \Re$ \\ The set of complex numbrs are a proper superset of all real numbers.
\item $\forall s \in \mathbb{C} ( s = a + ib \wedge i = \sqrt{-1} \wedge a \in \Re \wedge b \in \Re)$ \\ It is true that for all numbers s in the set $\mathbb{C}$ that $ i = \sqrt{-1}$ and that a is a real number and that b is a real number.
\item $\forall s \in \mathbb{C}$ (Re(s) = a $\wedge$ Im(s) = b) \\ The function Re applied to any complex number s will return the real part a, and the function Im will return the imaginary part b.
\item $ ib \in s \perp a \in s $ \\ All values bi exists in a dimension perpendicular to $\Re$. All values in $\mathbb{C}$ exists in a plane, where one axis is the real coordinate and the imaginary component of s is regarded as ocupying another coordinate axis in a cartesian coordinate system.
\item $\exists s \in \mathbb{C} (s = 0 \wedge s = 0 + 0i) $ \\ There exists an elemment s in $\mathbb{C}$ such that s is null and the meaning of this is that a = 0 and b = 0. This is called the null element.
\item $\exists s \in \mathbb{C} (s = 1 \wedge s = 1+0i) $ \\ There exists an element s in $\mathbb{C}$ such that s is 1 and the meaning of this is that a = 1 and b = 0. This is
\end{enumerate}
\end{document}