-
Notifications
You must be signed in to change notification settings - Fork 99
/
Primal_Functions_Historical_Data_Import.py
138 lines (106 loc) · 4.68 KB
/
Primal_Functions_Historical_Data_Import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import datetime
import pytz
import pandas as pd
import MetaTrader5 as mt5
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import pearsonr
from scipy.stats import spearmanr
from scipy.ndimage.interpolation import shift
import statistics as stats
from scipy import stats
frame_MIN1 = mt5.TIMEFRAME_M1
frame_M5 = mt5.TIMEFRAME_M5
frame_M10 = mt5.TIMEFRAME_M10
frame_M15 = mt5.TIMEFRAME_M15
frame_M30 = mt5.TIMEFRAME_M30
frame_H1 = mt5.TIMEFRAME_H1
frame_H2 = mt5.TIMEFRAME_H2
frame_H3 = mt5.TIMEFRAME_H3
frame_H4 = mt5.TIMEFRAME_H4
frame_H6 = mt5.TIMEFRAME_H6
frame_D1 = mt5.TIMEFRAME_D1
frame_W1 = mt5.TIMEFRAME_W1
frame_M1 = mt5.TIMEFRAME_MN1
now = datetime.datetime.now()
def asset_list(asset_set):
if asset_set == 1:
assets = ['EURUSD', 'USDCHF', 'GBPUSD', 'EURNZD', 'GBPCHF',
'USDCAD', 'EURCAD', 'EURGBP', 'EURCHF', 'AUDCAD']
elif asset_set == 2:
assets = ['EURNZD', 'NZDCHF', 'NZDCAD', 'EURAUD','AUDNZD',
'GBPCAD', 'AUDCHF', 'GBPAUD', 'GBPCHF', 'GBPNZD']
elif asset_set == 3:
assets = ['BTCUSD', 'ETHUSD', 'XRPUSD', 'ETCUSD','LTCUSD',
'MBTUSD', 'XMRUSD', 'ZECUSD', 'EOSUSD', 'EMCUSD']
elif asset_set == 4:
assets = ['XAUUSD', 'XAGUSD', 'XPTUSD', 'XPDUSD']
return assets
def mass_import(asset, horizon):
if horizon == 'MN1':
data = get_quotes(frame_MIN1, 2021, 5, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'M5':
data = get_quotes(frame_M5, 2021, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'M10':
data = get_quotes(frame_M10, 2020, 6, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'M15':
data = get_quotes(frame_M15, 2020, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'M30':
data = get_quotes(frame_M30, 2016, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'H1':
data = get_quotes(frame_H1, 2010, 5, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'H2':
data = get_quotes(frame_H2, 2010, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'H3':
data = get_quotes(frame_H3, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'H4':
data = get_quotes(frame_H4, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'H6':
data = get_quotes(frame_H6, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'D1':
data = get_quotes(frame_D1, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'W1':
data = get_quotes(frame_W1, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
if horizon == 'M1':
data = get_quotes(frame_M1, 2000, 1, 1, asset = assets[asset])
data = data.iloc[:, 1:5].values
data = data.round(decimals = 5)
return data
def get_quotes(time_frame, year = 2005, month = 1, day = 1, asset = "EURUSD"):
# Establish connection to MetaTrader 5
if not mt5.initialize():
print("initialize() failed, error code =", mt5.last_error())
quit()
timezone = pytz.timezone("Europe/Paris")
utc_from = datetime.datetime(year, month, day, tzinfo = timezone)
utc_to = datetime.datetime(now.year, now.month, now.day + 1, tzinfo = timezone)
rates = mt5.copy_rates_range(asset, time_frame, utc_from, utc_to)
rates_frame = pd.DataFrame(rates)
return rates_frame
assets = asset_list(1)
horizon = 'H1'
test = mass_import(0, horizon)