-
Notifications
You must be signed in to change notification settings - Fork 99
/
Pattern_TD_Waldo_8.py
56 lines (45 loc) · 1.78 KB
/
Pattern_TD_Waldo_8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Base parameters
expected_cost = 0.5 * (lot / 10000)
assets = asset_list(1)
window = 1000
# Trading parameters
horizon = 'H1'
# Mass imports
my_data = mass_import(0, horizon)
def signal(Data, high, low, close, buy, sell):
# Adding a few columns
Data = adder(Data, 3)
for i in range(len(Data)):
# Short-term Bottom
if Data[i, 3] < Data[i - 1, 2] and \
Data[i, 3] < Data[i - 2, 2] and \
Data[i, 3] < Data[i - 3, 2] and \
Data[i, 3] < Data[i - 4, 2] and \
Data[i, 3] < Data[i - 5, 2] and \
Data[i, 3] < Data[i - 6, 2] and \
Data[i, 3] < Data[i - 7, 2] and \
Data[i, 3] > Data[i - 12, 3]:
Data[i, buy] = 1
# Short-term Top
if Data[i, 3] > Data[i - 1, 1] and \
Data[i, 3] > Data[i - 2, 1] and \
Data[i, 3] > Data[i - 3, 1] and \
Data[i, 3] > Data[i - 4, 1] and \
Data[i, 3] > Data[i - 5, 1] and \
Data[i, 3] > Data[i - 6, 1] and \
Data[i, 3] > Data[i - 7, 1] and \
Data[i, 3] < Data[i - 12, 3]:
Data[i, sell] = -1
return Data
############################################################################## 1
my_data = adder(my_data, 10)
my_data = signal(my_data, 1, 2, 3, 6, 7)
if sigchart == True:
signal_chart_ohlc_color(my_data, assets[0], 3, 6, 7, window = 250)
holding(my_data, 6, 7, 8, 9)
my_data_eq = equity_curve(my_data, 8, expected_cost, lot, investment)
performance(my_data_eq, 8, my_data, assets[0])
plt.plot(my_data_eq[:, 3], linewidth = 1, label = assets[0])
plt.grid()
plt.legend()
plt.axhline(y = investment, color = 'black', linewidth = 1)