-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmore_num.ml
348 lines (317 loc) · 10.4 KB
/
more_num.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
(* ========================================================================== *)
(* FPTaylor: A Tool for Rigorous Estimation of Round-off Errors *)
(* *)
(* Author: Alexey Solovyev, University of Utah *)
(* *)
(* This file is distributed under the terms of the MIT license *)
(* ========================================================================== *)
(* -------------------------------------------------------------------------- *)
(* Functions for rational and floating-point numbers *)
(* -------------------------------------------------------------------------- *)
open Interval
open Num
let numerator = function
| Ratio r -> Ratio.numerator_ratio r
| Big_int n -> n
| Int n -> Big_int.big_int_of_int n
let denominator = function
| Ratio r -> Ratio.denominator_ratio r
| _ -> Big_int.unit_big_int
type gen_float = {
base : int;
significand : num;
exponent : num;
}
let num_of_gen_float f =
(* Bound the exponent to avoid huge numbers *)
if f.exponent <=/ Int (-100000) || f.exponent >=/ Int 100000 then
failwith "num_of_gen_float: the exponent is out of bounds"
else
f.significand */ (Int f.base **/ f.exponent)
let decode_num_str =
let split_at str ch =
let n = String.length str in
let i = try String.index str ch with Not_found -> -1 in
if i < 0 || i >= n then
str, ""
else
String.sub str 0 i,
String.sub str (i + 1) (n - i - 1)
in
let starts_with str prefix =
let len_str = String.length str and
len_p = String.length prefix in
if len_p > len_str then
false
else
String.sub str 0 len_p = prefix
in
let extract_exp str =
let s1, s2 = split_at str 'p' in
if s2 <> "" then
s1, 2, s2
else
let s1, s2 = split_at str 'e' in
if s2 <> "" then
s1, 10, s2
else
s1, 10, "0"
in
let compute_exp_shift hex base s_frac =
let n = String.length s_frac in
if n = 0 then 0 else
match (hex, base) with
| true, 2 -> n * 4
| false, 10 -> n
| _ -> failwith "Fractional part is not allowed for the given base"
in
fun str ->
let hex = starts_with str "0x" || starts_with str "-0x" in
let s_significand, base, s_exp = extract_exp str in
let s_int, s_frac = split_at s_significand '.' in
let exp_shift = compute_exp_shift hex base s_frac in
{
base = base;
significand = num_of_string (s_int ^ s_frac);
exponent = num_of_string s_exp -/ Int exp_shift;
}
let num_of_float_string str =
num_of_gen_float (decode_num_str str)
let is_nan x = (compare x nan = 0)
let is_infinity x = (classify_float x = FP_infinite)
let num_of_float x =
match classify_float x with
| FP_nan | FP_infinite ->
let msg = Printf.sprintf "num_of_float: %e" x in
failwith msg
(* if Config.fail_on_exception () then
failwith msg
else
(Log.warning_str msg; Int 0) *)
| FP_zero -> Int 0
| FP_normal | FP_subnormal ->
let m, e = frexp x in
let t = Int64.of_float (ldexp m 53) in
num_of_big_int (Big_int.big_int_of_int64 t) */ (Int 2 **/ Int (e - 53))
let log_big_int_floor b v =
let open Big_int in
let b = big_int_of_int b in
let rec loop t b' k k' =
let t' = mult_big_int b' t in
if gt_big_int t' v then
if k' = 1 then k
else loop t b k 1
else loop t' (mult_big_int b' b) (k + k') (k' + 1) in
if sign_big_int v <= 0 then -1
else loop unit_big_int b 0 1
let string_of_pos_finite_float_lo prec x =
assert (x > 0. && prec > 0);
let open Big_int in
let m, exp = frexp x in
let m, exp = big_int_of_int64 (Int64.of_float (ldexp m 53)), exp - 53 in
let two_exp = shift_left_big_int unit_big_int (abs exp) in
let ten = big_int_of_int 10 in
let n, rem =
if exp >= 0 then
shift_left_big_int m exp, zero_big_int
else
let mask = pred_big_int two_exp in
shift_right_big_int m (-exp), and_big_int m mask in
let r, e =
if sign_big_int n > 0 then
let k = log_big_int_floor 10 n + 1 in
let e = k - prec in
let b = power_big_int_positive_int ten (abs e) in
if e >= 0 then
div_big_int n b, e
else
let t = mult_big_int rem b in
let x = shift_right_big_int t (-exp) in
add_big_int (mult_big_int n b) x, e
else
let k = log_big_int_floor 10 (div_big_int two_exp rem) in
let b = power_big_int_positive_int ten (k + prec) in
let t = mult_big_int rem b in
let r = shift_right_big_int t (-exp) in
r, -(k + prec) in
let s = string_of_big_int r in
let e' = e + prec - 1 in
let s' = String.sub s 0 1 ^ "." ^ String.sub s 1 (prec - 1) in
if e' = 0 then s'
else s' ^ (if e' > 0 then "e+" else "e") ^ string_of_int e'
let string_of_pos_finite_float_hi prec x =
assert (x > 0. && prec > 0);
let open Big_int in
let m, exp = frexp x in
let m, exp = big_int_of_int64 (Int64.of_float (ldexp m 53)), exp - 53 in
let two_exp = shift_left_big_int unit_big_int (abs exp) in
let mask = pred_big_int two_exp in
let ten = big_int_of_int 10 in
let n, rem =
if exp >= 0 then
shift_left_big_int m exp, zero_big_int
else
shift_right_big_int m (-exp), and_big_int m mask in
let r, e, flag =
if sign_big_int n > 0 then
let k = log_big_int_floor 10 n + 1 in
let e = k - prec in
let b = power_big_int_positive_int ten (abs e) in
if e >= 0 then
let r, v = quomod_big_int n b in
r, e, sign_big_int v <> 0 || sign_big_int rem <> 0
else
let t = mult_big_int rem b in
let x, v = shift_right_big_int t (-exp), and_big_int t mask in
add_big_int (mult_big_int n b) x, e, sign_big_int v <> 0
else
let k = log_big_int_floor 10 (div_big_int two_exp rem) in
let b = power_big_int_positive_int ten (k + prec) in
let t = mult_big_int rem b in
let r, v = shift_right_big_int t (-exp), and_big_int t mask in
r, -(k + prec), sign_big_int v <> 0 in
let r = if flag then succ_big_int r else r in
let s = string_of_big_int r in
let s, e =
if String.length s > prec then
String.sub s 0 prec, succ e
else s, e in
let e' = e + prec - 1 in
let s' = String.sub s 0 1 ^ "." ^ String.sub s 1 (prec - 1) in
if e' = 0 then s'
else s' ^ (if e' > 0 then "e+" else "e") ^ string_of_int e'
let string_of_float_hi prec f =
match classify_float f with
| FP_infinite -> if f > 0. then "+inf" else "-inf"
| FP_nan -> "nan"
| FP_zero -> "0.0"
| _ ->
if f > 0. then string_of_pos_finite_float_hi prec f
else "-" ^ string_of_pos_finite_float_lo prec (-.f)
let string_of_float_lo prec f =
match classify_float f with
| FP_infinite -> if f > 0. then "+inf" else "-inf"
| FP_nan -> "nan"
| FP_zero -> "0.0"
| _ ->
if f > 0. then string_of_pos_finite_float_lo prec f
else "-" ^ string_of_pos_finite_float_hi prec (-.f)
let is_exact str =
let f = float_of_string str in
let n0 = num_of_float_string str in
let n1 = num_of_float f in
n0 =/ n1
let is_power_of_two n =
let n = abs_num n in
if is_integer_num n && n <>/ Int 0 then
let k = big_int_of_num n in
let pred_k = Big_int.pred_big_int k in
let r = Big_int.and_big_int k pred_k in
Big_int.eq_big_int r Big_int.zero_big_int
else
false
let next_float x =
match classify_float x with
| FP_nan -> nan
| FP_infinite ->
if x = infinity then x else nan
| FP_zero -> ldexp 1. (-1074)
| _ ->
begin
let bits = Int64.bits_of_float x in
if x < 0. then
Int64.float_of_bits (Int64.pred bits)
else
Int64.float_of_bits (Int64.succ bits)
end
let prev_float x =
match classify_float x with
| FP_nan -> nan
| FP_infinite ->
if x = neg_infinity then x else nan
| FP_zero -> ldexp (-1.) (-1074)
| _ ->
begin
let bits = Int64.bits_of_float x in
if x < 0. then
Int64.float_of_bits (Int64.succ bits)
else
Int64.float_of_bits (Int64.pred bits)
end
(* Returns the integer binary logarithm of big_int.
Returns -1 for non-positive numbers. *)
let log2_big_int_simple =
let rec log2 acc k =
if Big_int.sign_big_int k <= 0 then acc
else log2 (acc + 1) (Big_int.shift_right_big_int k 1) in
log2 (-1)
let log2_big_int =
let p = 32 in
let u = Big_int.power_int_positive_int 2 p in
let rec log2 acc k =
if Big_int.ge_big_int k u then
log2 (acc + p) (Big_int.shift_right_big_int k p)
else
acc + log2_big_int_simple k in
log2 0
(* Returns the integer binary logarithm of the absolute value of num. *)
let log2_num r =
let log2 r = log2_big_int (big_int_of_num (floor_num r)) in
let r = abs_num r in
if r </ Int 1 then
let t = -log2 (Int 1 // r) in
if (Int 2 **/ Int t) =/ r then t else t - 1
else log2 r
let float_of_pos_num_lo r =
assert (sign_num r >= 0);
if sign_num r = 0 then 0.
else begin
let n = log2_num r in
let k = min (n + 1074) 52 in
if k < 0 then 0.0
else
let m = big_int_of_num (floor_num ((Int 2 **/ Int (k - n)) */ r)) in
let f = Int64.to_float (Big_int.int64_of_big_int m) in
let x = ldexp f (n - k) in
if x = infinity then max_float else x
end
let float_of_pos_num_hi r =
assert (sign_num r >= 0);
if sign_num r = 0 then 0.0
else begin
let n = log2_num r in
let k = min (n + 1074) 52 in
if k < 0 then ldexp 1.0 (-1074)
else
let t = (Int 2 **/ Int (k - n)) */ r in
let m0 = floor_num t in
let m = if t =/ m0 then big_int_of_num m0
else Big_int.succ_big_int (big_int_of_num m0) in
let f = Int64.to_float (Big_int.int64_of_big_int m) in
ldexp f (n - k)
end
let float_of_num_lo r =
if sign_num r < 0 then
-. float_of_pos_num_hi (minus_num r)
else
float_of_pos_num_lo r
let float_of_num_hi r =
if sign_num r < 0 then
-. float_of_pos_num_lo (minus_num r)
else
float_of_pos_num_hi r
let interval_of_num n = {
low = float_of_num_lo n;
high = float_of_num_hi n
}
let interval_of_string str =
let n = num_of_float_string str in
interval_of_num n
let check_float v =
match (classify_float v) with
| FP_infinite -> "Overflow"
| FP_nan -> "NaN"
| _ -> ""
let check_interval x =
let c1 = check_float x.high in
if c1 = "" then check_float x.low else c1