-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
89 lines (83 loc) · 2.9 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
torch.cuda.empty_cache()
from unet2 import unet
from fcn import FCNs, VGGNet
import glob
from load_data import custom_dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import numpy as np
from matplotlib import pyplot as plt
def load_checkpoint(checkpoint, model):
print("loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 16
#model = unet()
vgg_model = VGGNet(requires_grad=True)
# test a random batch, loss should decrease
model = FCNs(pretrained_net=vgg_model, n_class=1)
model.to(device)
#load_checkpoint(torch.load("my_checkpoint.pth"), model)
model.load_state_dict(torch.load("checkpoint_model.pth"))
#img_path = glob.glob("data_road/training/image_2/*")
#mask_path = glob.glob("data_road/training/gt_image_2/*")
img_path = glob.glob("camvid/train/*")
mask_path = glob.glob("camvid/train_GT/*")
dataset = custom_dataset(img_path, mask_path)
print(len(img_path), len(mask_path))
print(len(dataset))
#train_set, test_set = random_split(dataset, [200,89], generator=torch.Generator().manual_seed(42) )
train_set, test_set = random_split(dataset, [300,120], generator=torch.Generator().manual_seed(42) )
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True)
print(len(train_loader), len(test_loader))
def check_accuracy(dataloader, model):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in dataloader:
x = x.to(device)
y = y.to(device)
scores = model(x)
#_, pred = scores.max(1)
pred = scores
#print(pred.shape, pred.dtype, y.shape, y.dtype)
num_correct += (pred==y).sum()
num_samples += pred.size(0)
print(f"got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100}")
model.train()
print("check acc on train set")
check_accuracy(train_loader, model)
print("check acc on test set")
check_accuracy(test_loader, model)
for x, y in train_loader:
x = x.to(device)
y = y.to(device)
scores = model(x)
print(scores.shape)
#_, pred = scores.max(1)
#print(pred.shape)
pred = scores
#pred = torch.argmax(pred.squeeze(), dim=0)#
pred = pred.detach().cpu().numpy()
#pred = np.expand_dims(pred, axis=0)#
y = y.detach().cpu().numpy()
print(pred.shape, y.shape)
#
pred = np.transpose(pred, (0, 2, 3, 1))
y = np.transpose(y, (0, 2, 3, 1))
print(pred.shape, y.shape)
print(np.unique(pred), np.unique(y))
#pred = torch.argmax(pred.squeeze(), dim=1).detach().cpu().numpy()
plt.imshow(np.squeeze(pred[10]))
plt.show()
plt.imshow(np.squeeze(y[10]))
plt.show()
plt.imshow(pred[10])
plt.show()
plt.imshow(y[10])
plt.show()
break
print("test")