-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_numpy_data2.py
103 lines (92 loc) · 3.67 KB
/
load_numpy_data2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Process CMU Hand dataset to get cropped hand datasets.
"""
import keras
import json
from tqdm import tqdm
import glob
import cv2
import numpy as np
from matplotlib import pyplot as plt
import os
from imgaug.augmentables.kps import KeypointsOnImage
from imgaug.augmentables.kps import Keypoint
import imgaug.augmenters as iaa
IMG_SIZE = 1024
NUM_KEYPOINTS = 42
class generator(keras.utils.Sequence):
def __init__(self, image_keys, aug, batch_size, train=True):
self.image_keys = image_keys
self.aug = aug
self.batch_size = batch_size
self.train = train
self.on_epoch_end()
def __len__(self):
return len(self.image_keys) // self.batch_size
def on_epoch_end(self):
self.indexes = np.arange(len(self.image_keys))
if self.train:
np.random.shuffle(self.indexes)
def __getitem__(self, index):
indexes = self.indexes[index * self.batch_size : (index + 1) * self.batch_size]
image_keys_temp = [self.image_keys[k] for k in indexes]
images = self.__data_generation(image_keys_temp)
return images
def __data_generation(self, image_keys_temp):
batch_images = np.empty((self.batch_size, IMG_SIZE, IMG_SIZE, 3), dtype="int")
batch_keypoints = np.empty((self.batch_size, NUM_KEYPOINTS), dtype="float32")
for i, key in enumerate(image_keys_temp):
data = cv2.imread(key)
#split = os.path.split(key)
#print(split)
extension = os.path.splitext(key)[0]
#print(extension)
key2 = extension + ".json"
#print(key2)
#data = cv2.resize(data, (368, 368))
# We then project the original image and its keypoint coordinates.
#current_image = data
# Apply the augmentation pipeline.
#new_image = self.aug(image=current_image)
#new_image = current_image
#batch_images[i,] = new_image
batch_images[i,] = data
dat = json.load(open(key2))
pts = np.array(dat['hand_pts'])
xmin = min(pts[:, 0])
xmax = max(pts[:, 0])
ymin = min(pts[:, 1])
ymax = max(pts[:, 1])
B = max(xmax - xmin, ymax - ymin)
# B is the maximum dimension of the tightest bounding box
width = 2.2 * B # This is based on the paper
pts = pts[:, :2]
# current_keypoint = np.array(data["joints"])[:, :2]
# kps = []
#pts = pts * 256 / width
# More on why this reshaping later.
# batch_keypoints[i,] = np.array(kp_temp).reshape(1, 1, 42)#same as below
batch_keypoints[i,] = np.array(pts).reshape(-1, 42) # same as above
# Scale the coordinates to [0, 1] range.
return batch_images, batch_keypoints
def plot_keypoints(img, points):
# display image
plt.imshow(img, cmap='gray')
#plt.imshow(np.float32(img), cmap='gray')
# plot the keypoints
for i in range(0, 42, 2):
#plt.scatter((points[i] + 0.5)*256, (points[i+1]+0.5)*256, color='red')
plt.scatter(points[i], points[i + 1], color='red')
#plt.scatter(points[:, 0], points[:, 1])
#cv2.circle(img, (int(points[i]), int(points[i + 1])), 3, (0, 255, 0), thickness=-1) # , lineType=-1)#, shift=0)
plt.show()
samples = sorted(glob.glob("hand_labels_synth/synth4/*.jpg"))
x = generator(samples, batch_size=32, aug=None)#, aug=train_aug)
#train_images, train_labels = generator(samples, batch_size=32, aug=None)#, aug=train_aug)
#print(len(x), len(y))
for i,j in x:
print(i.shape, j.shape)
print(i[0].shape, j[0].shape)
break
plot_keypoints(i[0], j[0])
plt.show()