-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_numpy_data.py
228 lines (203 loc) · 7.26 KB
/
load_numpy_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Process CMU Hand dataset to get cropped hand datasets.
"""
import json
from tqdm import tqdm
import glob
import cv2
import numpy as np
from matplotlib import pyplot as plt
import pickle
import joblib
train_labels = []
for label_dir in tqdm(sorted(glob.glob("hand_labels/train/label/*.json")), total=1912):
# label_dir = 'hand_labels/test/label/' + img[:-4] + '.json'
dat = json.load(open(label_dir))
pts = np.array(dat['hand_pts'])
xmin = min(pts[:, 0])
xmax = max(pts[:, 0])
ymin = min(pts[:, 1])
ymax = max(pts[:, 1])
B = max(xmax - xmin, ymax - ymin)
# B is the maximum dimension of the tightest bounding box
width = 2.2 * B # This is based on the paper
# the center of hand box can be
center = dat["hand_box_center"]
hand_box = [[center[0] - width / 2., center[1] - width / 2.],
[center[0] + width / 2., center[1] + width / 2.]]
hand_box = np.array(hand_box)
lbl = pts[:, :2] - hand_box[0, :]
lbl = lbl * 256 / width
train_labels.append(lbl)
# lbl = lbl.tolist()
train_labels = np.array(train_labels)
train_labels = train_labels.reshape(1912, -1)
#extra
#train_labels = train_labels.astype(np.float32)
#train_labels = train_labels / 256 - 0.5
test_labels = []
for label_dir in tqdm(sorted(glob.glob("hand_labels/test/label/*.json")), total=846):
# label_dir = 'hand_labels/test/label/' + img[:-4] + '.json'
dat = json.load(open(label_dir))
pts = np.array(dat['hand_pts'])
xmin = min(pts[:, 0])
xmax = max(pts[:, 0])
ymin = min(pts[:, 1])
ymax = max(pts[:, 1])
B = max(xmax - xmin, ymax - ymin)
# B is the maximum dimension of the tightest bounding box
width = 2.2 * B # This is based on the paper
# the center of hand box can be
center = dat["hand_box_center"]
hand_box = [[center[0] - width / 2., center[1] - width / 2.],
[center[0] + width / 2., center[1] + width / 2.]]
hand_box = np.array(hand_box)
lbl = pts[:, :2] - hand_box[0, :]
lbl = lbl * 256 / width
test_labels.append(lbl)
# lbl = lbl.tolist()
test_labels = np.array(test_labels)
test_labels = test_labels.reshape(846, -1)
#extra
#test_labels = test_labels.astype(np.float32)
#test_labels = test_labels / 256 - 0.5 # scale
size_x = 256
size_y = 256
num_classes = 42
# training list
train_images = []
for img_path in tqdm(sorted(glob.glob("hand_labels/train/crop/*.jpg")), total=1912):
img = cv2.imread(img_path)
# img = cv2.resize(img, (size_x, size_y))
train_images.append(img)
"convert list to np array for ml processing"
train_images = np.array(train_images) # dtype:uint8
#extra
train_images = train_images.astype(np.float32)
train_images = train_images/255
test_images = []
for img_path in tqdm(sorted(glob.glob("hand_labels/test/crop/*.jpg")), total=846):
img = cv2.imread(img_path)
# img = cv2.resize(img, (size_x, size_y))
test_images.append(img)
"convert list to np array for ml processing"
test_images = np.array(test_images) # dtype:uint8
#extra
test_images = test_images.astype(np.float32)
test_images = test_images/255
print('Training image data: ' + str(train_images.shape))
print('Training points data: ' + str(train_labels.shape))
print('Testing image data: ' + str(test_images.shape))
print('Testing points data: ' + str(test_labels.shape))
# plots keypoints on face image
def plot_keypoints(img, points):
# display image
plt.imshow(img, cmap='gray')
#plt.imshow(np.float32(img), cmap='gray')
# plot the keypoints
for i in range(0, 42, 2):
#plt.scatter((points[i] + 0.5)*256, (points[i+1]+0.5)*256, color='red')
plt.scatter(points[i], points[i + 1], color='red')
# cv2.circle(img, (int(points[i]), int(points[i + 1])), 3, (0, 255, 0), thickness=-1) # , lineType=-1)#, shift=0)
plt.show()
#"""
# does data augmentation by flipping the image
def augment_data(img, points):
rows, cols, channel = img.shape
new_img = np.copy(img)
# flip the image
for i in range(256):
for j in range(128):
temp = img[i][j]
new_img[i][j] = img[i][cols - j - 1]
new_img[i][cols - j - 1] = temp
# flip the points
new_points = np.copy(points)
for i in range(0, 42, 2):
#new_points[i] = -points[i]
new_points[i] = 256-points[i]-1
#new_points[i] = 256 - points[i] # 1 pixel differnec
return new_img, new_points
#"""
"""
flip_img, flip_points = augment_data(train_images[0], train_labels[0])
plot_keypoints(flip_img, flip_points)
flip_img, flip_points = augment_data(train_images[1], train_labels[1])
plot_keypoints(flip_img, flip_points)
flip_img, flip_points = augment_data(train_images[19], train_labels[19])
plot_keypoints(flip_img, flip_points)
flip_img, flip_points = augment_data(train_images[20], train_labels[20])
plot_keypoints(flip_img, flip_points)
flip_img, flip_points = augment_data(train_images[50], train_labels[50])
plot_keypoints(flip_img, flip_points)
flip_img, flip_points = augment_data(train_images[60], train_labels[60])
plot_keypoints(flip_img, flip_points)
#plot_keypoints(train_images[0], train_labels[0])
#plot_keypoints(train_images[1], train_labels[1])
#plot_keypoints(train_images[19], train_labels[19])
#plot_keypoints(train_images[20], train_labels[20])
plot_keypoints(train_images[60], train_labels[60])
plt.show()
"""
train_images_aug = []
train_labels_aug = []
#"""
# apply flipping operation
for i in tqdm(range(0, train_images.shape[0])):
aug_img, aug_point = augment_data(train_images[i], train_labels[i])
# original data
train_images_aug.append(train_images[i])
train_labels_aug.append(train_labels[i])
# augmented data
train_images_aug.append(aug_img)
train_labels_aug.append(aug_point)
"""
# convert to numpy
"""
train_images_aug = np.array(train_images_aug)
train_labels_aug = np.copy(train_labels_aug)
"""
"""
print('Training image data: ' + str(train_images_aug.shape))
print('Training points data: ' + str(train_labels_aug.shape))
print('Testing image data: ' + str(test_images.shape))
print('Testing points data: ' + str(test_labels.shape))
"""
id = 50
#plot_keypoints(train_images_aug[id], train_labels_aug[id])
plot_keypoints(train_images[id], train_labels[id])
"""
fig = plt.figure(figsize=(20,20))
for i in range(16):
fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
plot_keypoints(train_images_aug[i], train_labels_aug[i])
plt.show()
# train_images = train_images.reshape(train_images.shape[0], 256, 256, 1)
#train_images2 = train_images.reshape(train_images.shape[0], 256, 256, 3)
#img_height = train_images2.shape[1]
#img_width = train_images2.shape[2]
#img_channels = train_images2.shape[3]
img_height = 256
img_width = 256
img_channels = 3
input_shape = (img_height, img_width, img_channels)
print(input_shape)
"""
pickle_out = open("x_train.pickle","wb" )
pickle.dump(train_images_aug, pickle_out)
pickle_out.close()
pickle_out = open("y_train.pickle","wb")
pickle.dump(train_labels_aug, pickle_out)
pickle_out.close()
pickle_out = open("x_test.pickle","wb")
pickle.dump(test_images, pickle_out)
pickle_out.close()
pickle_out = open("y_test.pickle","wb")
pickle.dump(test_labels, pickle_out)
pickle_out.close()
"""
joblib.dump(train_images_aug, 'x_train.joblib')
joblib.dump(train_labels_aug, 'y_train.joblib')
joblib.dump(test_images, 'x_test.joblib')
joblib.dump(test_labels, 'y_test.joblib')
a=1