Skip to content
This repository has been archived by the owner on Nov 3, 2020. It is now read-only.

TensorFlow GPU 版本的安装叙述 #8

Open
wklchris opened this issue Dec 5, 2018 · 0 comments
Open

TensorFlow GPU 版本的安装叙述 #8

wklchris opened this issue Dec 5, 2018 · 0 comments

Comments

@wklchris
Copy link

wklchris commented Dec 5, 2018

现文档版本(0.3)的“TensorFlow 安装”一章对于 GPU 版本的 TF 安装叙述略过简短,而它相比 TensorFlow 的 CPU 版本安装更加复杂.在“安装前的环境配置”一节中,建议将 CPU 与 GPU 版的安装分开叙述.在此我愿抛砖引玉.我使用的是 Windows 10 x64 平台,GPU 版本的 TF 安装步骤如下:

---------- 以下正文开始 ----------

确认你的电脑适合安装 GPU 版本的 TensorFlow

  1. 确认你的电脑上配置了 Nvidia 的独立显卡
  2. 前往 CUDA GPUs 网页,找到你的电脑上配置的 Nvidia 显卡型号,确认其 Compute Capability 不低于3.0.一般用户的显卡型号可以在 “CUDA-Enabled GeForce Products” 项下找到.
  3. 确认你的电脑上已安装了 Python 3.5 或更高的版本.

GPU 版本的 TensorFlow 安装步骤

GPU 版本 TensorFlow 由 tensorflow-gpu 包支持(该包也支持 CPU,因此无须再安装仅 CPU 版的 TensorFlow),以下是其安装步骤:

  1. 确认你要安装的 tensorflow-gpu 版本.Python 3.6 的用户请选择不低于 TensoFlow-gpu 1.2 的版本.
  2. 前往 GPU Support 页面,根据“Software requirements”的内容确定需要安装的 Nvidia 显卡驱动、CUDA Toolkit 与 cuDNN 版本.如果要安装过往版本的 tensorflow-gpu,可以参考 Build from Source 页面底部“GPU”表格来选择 CUDA Toolkit 与 cuDNN 版本.
    • CUDA Toolkit 历史版本:tensorflow-gpu 1.12 要求安装的 CUDA Toolkit 9.0 并不是最新的 CUDA.注意,请下载 CUDA Toolkit 9.0,而不是 9.1 或其他 9.x 版本.安装在后续步骤说明.
    • cuDNN:cuDNN 的下载需要免费注册成为 Nvidia Developer.tensorflow-gpu 1.12 要求不低于 7.2 版的 cuDNN.安装在后续步骤说明.
  3. 安装 Nvidia 显卡驱动.根据上一步中的显卡驱动版本要求,下载并安装显卡驱动.
  4. 安装 CUDA Toolkit.安装对应版本的 CUDA Toolkit.在安装时,请选择 Custom 安装,并取消勾选其中的显卡驱动组件;这是因为 CUDA 携带的显卡驱动往往较为陈旧.
  5. 安装 cuDNN.cuDNN 下载后是一个内含名为 “cuda” 文件夹的压缩包,将“cuda”下的所有子文件夹解压到 CUDA Toolkit 安装路径下即可.CUDA Toolkit(以 9.0 版为例)的默认安装路径是:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0
  6. 将 CUDA Toolkit 与 cuDNN 加入 PATH 环境变量.由于 cuDNN 已经解压到 CUDA Toolkit 文件夹下,因此只需要向 PATH 添加以下两个路径(这也是 GPU Support 页面底部的步骤):
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\extras\CUPTI\libx64
    
  7. 安装 tensorflow-gpu.利用 pip 可以方便地安装 tensorflow-gpu 的最新版本:
    pip3 install tensorflow-gpu
    若被网速或者版本困扰,你也可以访问 tensorflow-gpu 的 PyPi 页面,从左侧的 Release History 中选择要安装的 tensorflow-gpu 版本,下载对应的 whl 文件,然后从本地安装(以 1.12 版为例):
    pip3 install tensorflow_gpu-1.12.0-cp36-cp36m-win_amd64.whl

测试 GPU 版的 TensorFlow 是否正确安装

可用 Python 执行以下命令来测试安装结果:

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

如果打印结果中包含 GPU 设备,则说明 GPU 版的 TensorFlow 已正确地识别了你电脑的 Nvidia 显卡.

---------- 正文结束 ----------

由于我并没有使用 Anaconda,因此安装步骤与文中将有所出入.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant