-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharriscorner.py
229 lines (188 loc) · 9.08 KB
/
harriscorner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Detect corners using C. Harris and M. Stephens 1988
# see https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6
# Pseudo code
# 1.Take the grayscale of the original image
# 2. Apply a Gaussian filter to smooth out any noise
# 3. Apply Sobel operator to find the x and y gradient values for every pixel in the grayscale image
# 4. For each pixel p in the grayscale image, consider a 3×3 window around it and compute the corner strength function. Call this its Harris value.
# 5. Find all pixels that exceed a certain threshold and are the local maxima within a certain window (to prevent redundant dupes of features)
# 6. For each pixel that meets the criteria in 5, compute a feature descriptor.
#import matplotlib.pyplot as plt
import numpy as np
import cv2
ver = (cv2.__version__)
print( "Version",ver )
# read image
img = cv2.imread( "Images/cu_baby_320.jpg" )
#print( "DEPTH",img.depth )
# copy image and change to RGB
img_cpy = np.copy( img )
img_cpy = cv2.cvtColor( img_cpy, cv2.COLOR_BGR2RGB )
cv2.imshow( "Image originelle", img_cpy )
# 1. grayscale
gray = cv2.cvtColor( img_cpy, cv2.COLOR_RGB2GRAY)
gray = np.float32(gray)
# *********************************************************************** HARRIS
harris_corner_win = "Harris Corners"
harris_dst_win = "Harris DST"
cv2.namedWindow( harris_corner_win )
cv2.namedWindow( harris_dst_win )
thres = 200
max_thres = 255
def corner_harris( val_tresh ):
# 2. DetectCorners
# dst = cv.cornerHarris( src, blockSize, ksize, k[, dst[, borderType]] )
# dst = detM^(x,y) - k (trM^(x,y))^2
dst = cv2.cornerHarris( src=gray,
blockSize=2,
ksize=3, #aperture, Sobel operator
k=0.04, # free parameter
)
cv2.imshow( harris_dst_win, dst )
# dst = cv2.dilate( dst, None )
# Normalizing
dst_norm = np.empty(dst.shape, dtype=np.float32)
cv2.normalize(dst, dst_norm, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX)
dst_norm_scaled = cv2.convertScaleAbs(dst_norm)
thresh = val_tresh #val_thres * dst.max()
# Create an image copy to draw corners on
corner_img = np.copy( img_cpy)
# Iterate through all the corners and draw them on the image
# (if they pass the threshold)
for j in range(0, dst.shape[0]):
for i in range(0, dst.shape[1]):
if(dst_norm_scaled[j,i] > thresh):
# image, center pt, radius, color, thickness
cv2.circle( corner_img, (i, j), 3, (0,255,0), 1)
cv2.imshow( harris_corner_win, corner_img )
cv2.createTrackbar( 'Thres: ', harris_corner_win, thres, max_thres, corner_harris )
cv2.imshow( harris_corner_win, img_cpy )
cv2.imshow( harris_dst_win, img_cpy )
# ***************************************************** Shi-Tomasi Good Features
shitomasi_corner_win = "ShiTomasi Corners"
cv2.namedWindow( shitomasi_corner_win )
quality = 10
quality_max = 100
quality_param = None
mindist = 5
mindist_max = 50
def corner_shitomasi( qual, min_dist ):
corners = cv2.goodFeaturesToTrack(gray, 25, qual, min_dist)
corners = np.int0(corners)
shi_img = np.copy( img_cpy)
for i in corners:
x,y = i.ravel()
cv2.circle( shi_img,(x,y), 3, 255,-1)
cv2.imshow( shitomasi_corner_win, shi_img )
def shitomasi_quality( val ):
global quality_param
quality_param = float(val) / float(quality_max)
corner_shitomasi( quality_param, mindist )
def shitomasi_mindist( val ):
global mindist
mindist = val
corner_shitomasi( quality_param, mindist )
cv2.createTrackbar( 'Quality: ', shitomasi_corner_win, quality, quality_max, shitomasi_quality )
cv2.createTrackbar( 'MinDist: ', shitomasi_corner_win, mindist, mindist_max, shitomasi_quality )
cv2.imshow( shitomasi_corner_win, img_cpy )
# ************************************************************************ Canny
canny_line_win = "Canny Lines"
cv2.namedWindow( canny_line_win )
canny_det_win = "Cannu Det"
cv2.namedWindow( canny_det_win )
low_th = 0
low_th_max = 100
high_th = 10
high_th_max = 100
kernel_size = 3
def lines_canny( low, high ):
img_blur = cv2.blur( gray, (3,3))
img_blur = np.uint8(img_blur)
# print( "GRAY",gray.depth )
# print( "BLUR",img_blur.depth )
detected_edges = cv2.Canny(img_blur,
low, high, kernel_size)
cv2.imshow(canny_det_win, detected_edges)
mask = detected_edges != 0
dst_canny = img * (mask[:,:,None].astype(img.dtype))
cv2.imshow(canny_line_win, dst_canny)
def canny_low( val ):
global low_th
low_th = min( val, high_th )
lines_canny( low_th, high_th )
def canny_high( val ):
global high_th
high_th = max( val, low_th )
lines_canny( low_th, high_th )
cv2.createTrackbar( 'Low: ', canny_line_win, low_th, low_th_max, canny_low )
cv2.createTrackbar( 'High: ', canny_line_win, high_th, high_th_max, canny_high )
cv2.imshow(canny_line_win, img_cpy)
cv2.imshow(canny_det_win, img_cpy)
# ************************************************************************* Blob
blob_win = "Blob Detector"
cv2.namedWindow( blob_win )
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# img_gray = cv2.imread( "Images/cu_baby_320.jpg", cv2.IMREAD_GRAYSCALE)
# # Change thresholds
params.minThreshold = 10
params.maxThreshold = 200
# # Filter by Area.
params.filterByArea = True
params.minArea = 100
# Filter by Color
params.filterByColor = True
params.blobColor = 0
# # Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.1
# # Filter by Convexity
params.filterByConvexity = True
params.minConvexity = 0.9
# # Filter by Inertia
params.filterByInertia = False
params.minInertiaRatio = 0.9
# # Create a detector with the parameters
blob = cv2.SimpleBlobDetector_create(params)
# # Detect blobs.
img_src = np.uint8( gray )
keypoints = blob.detect( img_src )
# keypoints = angle, class_id, octave (pyramid layer), pt2D, response, size
print(">*** {} points".format( len(keypoints)))
for k in keypoints:
print( "s={}".format( k.size ))
# # Draw detected blobs as red circles.
# # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
# # the size of the circle corresponds to the size of blob
blob_img = cv2.drawKeypoints( img_cpy, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# # Show blobs
cv2.imshow( blob_win, blob_img )
# ************************************************************************** ORB
orb_corner_win = "ORB Corners"
cv2.namedWindow( orb_corner_win )
orb = cv2.ORB_create()
# setEdgeThreshold = 31
# setFastThreshold = 20
# setMaxFeatures = 500
# setNLevels = 8
# setPatchSize = 31
# Parameters
# nfeatures The maximum number of features to retain.
# scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.
# nlevels The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
# edgeThreshold This is size of the border where the features are not detected. It should roughly match the patchSize parameter.
# firstLevel The level of pyramid to put source image to. Previous layers are filled with upscaled source image.
# WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
# scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute.
# patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger.
# fastThreshold the fast threshold
def corner_orb():
img_gray = np.uint8( gray )
kp = orb.detect( img_gray, None )
orb_img = cv2.drawKeypoints(img_cpy, kp, np.array([]), color=(0,255,0), flags=0)
cv2.imshow( orb_corner_win, orb_img )
cv2.imshow( orb_corner_win, img_cpy )
corner_orb()
cv2.waitKey()