-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.py
executable file
·214 lines (178 loc) · 7.21 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# matrix.py -- A module for the creation of matrices
# for purposes of projecting things to the screen.
# Eventually these should be ported to C or C++ for
# better efficiency!
# Note that while I've been ignoring exceptions, I
# should probably create a MatrixException class
# that would include "AddException" or
# "MultException" when invalid matrix arithmetic
# is attempted
# Also note that this module needs the following:
# ttable.py, for bradian trig table functions
# vertex.py, for vectors
from ttable import *
from vertex import *
class matrix(object):
def __init__(self):
self.mx = []
# Note that I decided to do away with __add__ and
# __sub__, since they aren't used much in computer
# graphics.
def __mul__(self, m):
"""Multiplies two matrices, or a matrix and scalar, or a matrix and a vector..
This should also throw an exception if the two matrices provided cannot be multiplied
together. (This isn't implemented, though. As it currently stands, it allows multi-
plication of matrices that are sufficiently similar...that is, any two matrices for
which the index doesn't go out of range before the algorithm is finished.
For example, it's possible to "multiply" two 3x2 matrices.)"""
if isinstance(m, matrix):
r = matrix()
for i in range(0, len(self.mx)):
r.mx.append([])
for j in range(0, len(m.mx[0])):
r.mx[i].append(0)
for k in range(0, len(m.mx)):
r.mx[i][j] += self.mx[i][k]*m.mx[k][j]
return r
elif isinstance(m, vector):
return self.proj(m)
else:
r = matrix()
for i in range(0, len(self.mx)):
r.mx.append([])
for j in range(0, len(m.mx[0])):
r.mx[i].append(self.mx[i][j]*m)
return r
def proj(self, v):
"""Multiplies a matrix with a vector.
I call it "proj" because it will be how I
will project a vector using my camera
matrix."""
# Note that I've removed v.w from this matrix; the
# last element should be self.mx[j][3]*v.w
# Instead, I assume that w==1.
x = float(self.mx[0][0]*v.x + self.mx[0][1]*v.y + \
self.mx[0][2]*v.z + self.mx[0][3])
y = float(self.mx[1][0]*v.x + self.mx[1][1]*v.y + \
self.mx[1][2]*v.z + self.mx[1][3])
z = float(self.mx[2][0]*v.x + self.mx[2][1]*v.y + \
self.mx[2][2]*v.z + self.mx[2][3])
w = float(self.mx[3][0]*v.x + self.mx[3][1]*v.y + \
self.mx[3][2]*v.z + self.mx[3][3])
# We might as well return a homogeneous vector!
if w == 0:
return vector(x, y, z)
else:
return vector(x/w, y/w, z/w)
def __str__(self):
"""Creates a string representation of a matrix."""
string = ''
for i in self.mx:
string += '[ %s ]\n' % i
return string
def getproj(left, right, top, bottom, near, far):
"""Takes values given and returns a projection matrix.
This function is based on the general description
given in 3D Game Engine Design, p. 86...This
matrix also incorporates the two equations
(Sx-1)*(x+1)/2 and (Sy-1)*(y+1)/2.
that will project the vectors onto the screen.
(As described in 3D Game Engine Design, the matrix
doesn't do this.)"""
Sx = right-left
Sy = top-bottom
Sz = far-near
# To translate the point to screen coordinates,
# I'll need the following constants:
PSx = (Sx-1)/2
PSy = (Sy-1)/2
mx = matrix()
mx.mx = [
[2*near/Sx*PSx, 0, (right+left)/Sx-PSx, 0],
[0, 2*near/Sy*PSy, (top+bottom)/Sy-PSy, 0],
[0, 0, -(far+near)/Sz, -2*(far*near)/Sz],
[0, 0, -1, 0] ]
return mx
def getfovproj(left, right, top, bottom, near, beta):
"""Takes values given and returns a fov projection matrix.
This function is based on the technique described
in Linux 3D Programming, p. 381. Unlike the
original setproj(), the vectors returned are given
as screen coordinates."""
Sy = float(top - bottom)
Sx = float(right - left)
fov = tcot(beta/2)
mx = matrix()
mx.mx = [ [(Sx/2)*fov, 0, Sx/2, 0],
[0, -(Sy/2)*fov*(Sx/Sy), Sy/2, 0],
[0, 0, near, 1],
[0, 0, 1, 0] ]
print "Sy=%s, Sx=%s, fov=%s" % (Sy, Sx, fov)
print mx
return mx
# Here we assume that left, up, fd form an
# orthonormal basis. I would expect that
# interesting things would happen if these
# vectors -weren't- orthonormal! but I haven't
# tried it yet, to see what would happen.
def getcam(fwd, left, up, eye):
"""Takes given vectors and returns a coord-changing matrix.
That is, a matrix that transfers "world"
coordinates to camera ones, and then translates
them via the eye to the right spot."""
mx = matrix()
mx.mx = [ [left.x, left.y, left.z, -left.dot(eye)],
[up.x, up.y, up.z, -up.dot(eye)],
[fwd.x, fwd.y, fwd.z, -fwd.dot(eye)],
[0, 0, 0, 1] ]
#mx.mx = [ [fwd.x, fwd.y, fwd.z, -fwd.dot(eye)],
# [left.x, left.y, left.z, -left.dot(eye)],
# [up.x, up.y, up.z, -up.dot(eye)],
# [0, 0, 0, 1] ]
#mx.mx = [ [fwd.x, left.x, up.x, -fwd.dot(eye)],
# [fwd.y, left.y, up.y, -left.dot(eye)],
# [fwd.z, left.z, up.z, -up.dot(eye)],
# [0, 0, 0, 1] ]
return mx
# Here we assume that axis is normalized...but pos
# shouldn't be! The default is the identity matrix...
def getworld(beta=0, axis=Up, pos=Zero):
"""Takes values and returns a rotation/translation matrix.
In particular, it rotates the object beta bradians
around given axis (it needs to be pre-normalized)
and then translates the object via pos."""
# This is the rotation quaternion...
w = tcos(beta/2)
x = tsin(beta/2)*axis.x
y = tsin(beta/2)*axis.y
z = tsin(beta/2)*axis.z
# Here are a few calculations that will be used to
# create our special matrix!
xx2 = 2*x*x; yy2 = 2*y*y; zz2 = 2*z*z
wx2 = 2*w*x; wy2 = 2*w*y; wz2 = 2*w*z
xy2 = 2*x*y; xz2 = 2*x*z; yz2 = 2*y*z
quat_mx = matrix()
quat_mx.mx = [ [1-yy2-zz2, xy2+wz2, xz2-wy2, 0],
[xy2-wz2, 1-xx2-zz2, yz2+wx2, 0],
[xz2+wy2, yz2-wx2, 1-xx2-yy2, 0],
[0, 0, 0, 1] ]
# Now we'll add the translation portion; here we assume that
# the rotation is done first, and then the translation.
quat_mx.mx[0][3] = quat_mx.mx[0][0]*pos.x + quat_mx.mx[0][1]*pos.y + quat_mx.mx[0][2]*pos.z
quat_mx.mx[1][3] = quat_mx.mx[1][0]*pos.x + quat_mx.mx[1][1]*pos.y + quat_mx.mx[1][2]*pos.z
quat_mx.mx[2][3] = quat_mx.mx[2][0]*pos.x + quat_mx.mx[2][1]*pos.y + quat_mx.mx[2][2]*pos.z
return quat_mx
def gettrans(pos=Zero):
mx = matrix()
mx.mx = [ [1, 0, 0, pos.x],
[0, 1, 0, pos.y],
[0, 0, 1, pos.z],
[0, 0, 0, 1] ]
return mx
def getskew(r, s, t, pos=Zero):
mx = matrix()
mx.mx = [ [r, 0, 0, pos.x],
[0, s, 0, pos.y],
[0, 0, t, pos.z],
[0, 0, 0, 1] ]
return mx