-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathon_ftrs_tsne.py
45 lines (34 loc) · 1.13 KB
/
on_ftrs_tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from dataloader import ATeX
from sklearn.manifold import TSNE
from models.tsne import extract_sequence
from utils.visualize import savegif, plot_2d
dataset = ATeX()
features = np.loadtxt('./outputs/train_shufflenet_ftrs.txt', delimiter=',')
labels = np.loadtxt('./outputs/train_shufflenet_lbls.txt', delimiter=',')
print(dataset.classes)
# exit()
perplexity = 20
learning_rate = 200
n_iter = 1000
exploration_n_iter = 300
method = "barnes_hut"
tsne = TSNE(
n_components=2,
perplexity=perplexity,
learning_rate=learning_rate,
n_iter=n_iter,
verbose=2,
method=method)
tsne._EXPLORATION_N_ITER = exploration_n_iter
ftrs_embedded = tsne.fit_transform(features)
plot_2d(ftrs_embedded, labels, dataset.classes)
np.savetxt("./outputs/train_tsne_ftrs.txt", ftrs_embedded, delimiter=",")
exit()
Y_seq = extract_sequence(tsne, features)
lo = Y_seq.min(axis=0).min(axis=0).max()
hi = Y_seq.max(axis=0).max(axis=0).min()
limits = ([lo, hi], [lo, hi])
fig_name = "%s-%d-%d-tsne" % ("ATeX", 300, 100)
fig_path = "./outputs/%s.gif" % (fig_name)
savegif(Y_seq, labels, "t-SNE", fig_path, dataset.classes, limits=limits)