-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheucd_pelagic_import.R
179 lines (143 loc) · 5.32 KB
/
eucd_pelagic_import.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
library(data.table)
library(magrittr)
library(plyr)
library(dplyr)
library(rgdal)
library(raster)
library(rgeos)
### Define helper functions
no_s <- function(x){
require(magrittr)
sub("S","",x) %>% as.numeric
}
collapse_shared <- function(x){
require(magrittr)
require(plyr)
require(dplyr)
rbind(
x %>% filter(group_identifier == "")
,
x %>% filter(group_identifier != "") %>% group_by(group_identifier) %>% filter(no_s(sampling_event_identifier)==sort(no_s(sampling_event_identifier))[1]) %>% ungroup
)
}
get_month <- function(x){
require(magrittr)
substr(x,6,7) %>% as.numeric
}
get_year <- function(x){
require(magrittr)
substr(x,1,4) %>% as.numeric
}
### READ IN EUCD DATA
## Define infile path
infile <- "ebd_eucdov_prv_relAug-2018/ebd_eucdov_prv_relAug-2018.txt"
## Read data
eucd <- fread(infile)
names(eucd) <- names(eucd) %>% tolower %>% gsub("[/ ]","_",.)
nrow(eucd) # After read-in # 1,862,997
eucd <- eucd %>%
filter(state_code %in% c("US-AK","CA-BC","US-WA","US-OR","US-CA")) %>%
filter(state != "Washington" | county %in% c("San Juan","Island","Whatcom","Skagit","Snohomish","King","Pierce","Thurston","Mason","Kitsap","Clallam","Jefferson","Grays Harbor","Pacific","Wahkiakum")) %>%
filter(state != "Oregon" | county %in% c("Columbia","Clatsop","Tillamook","Lincoln","Lane","Douglas","Coos","Curry")) %>%
filter(state != "California" | county %in% c("Del Norte","Humboldt","Mendocino","Sonoma","Marin","Napa","Solano","Contra Costa","Alameda","Santa Clara","San Mateo","San Francisco","Santa Cruz","Monterey","San Luis Obispo","Santa Barbara","Ventura","Los Angeles","Orange","San Diego")) %>%
filter(approved==1) %>%
collapse_shared
nrow(eucd) # After state/county filtering # 262,812
saveRDS(eucd,"eucd.rds")
#
# ### Keyword processing, ALL data!
#
# eucd <- fread(infile)
# names(eucd) <- names(eucd) %>% tolower %>% gsub("[/ ]","_",.)
#
# eucd_keywords <- eucd %>%
# filter(country %in% c("United States","Canada")) %>%
# filter(species_comments != "") %>%
# filter(flight_keyword(species_comments))
# # 5304 keyword records
### DEFINE PROJECTIONS
latlong_proj <- "+proj=longlat +datum=WGS84 +no_defs"
utm10_proj <- "+proj=utm +zone=10 +datum=WGS84 +units=m +no_defs"
### READ IN LAND DATA
land_shp <- readOGR("ne_10m_land",layer="ne_10m_land")
crs(land_shp)
extent(land_shp)
#ocean_shp <- spTransform(ocean_shp,utm10_proj)
## Make table of distinct localities
loctable <- eucd %>% distinct(locality_id,.keep_all=T)
xy <- loctable[,c('longitude','latitude')]
#spdf <- SpatialPointsDataFrame(coords = xy,
# data = eucd,
# proj4string = crs(latlong_proj))
sps <- SpatialPoints(coords = xy,proj4string = crs(latlong_proj))
#spdf <- spTransform(spdf,crs(ocean_shp))
#spdf <- spTransform(spdf,utm10_proj)
#sps <- as(spdf,'SpatialPoints')
crs(sps)
extent(sps)
sps <- spTransform(sps,utm10_proj)
crs(sps)
extent(sps)
nrow(loctable) # Number of distinct LocIDs # 40,280
#buffered <- gBuffer(spdf,width=10000,byid=T)
#buffered <- SpatialPolygonsDataFrame( buffered, data=buffered@data )
#writeOGR( buffered, "buffered", "buffered", driver="ESRI Shapefile" )
#buffered <- spTransform(buffered,crs(ocean_shp))
#over(buffered,ocean_shp)
#gIntersects(buffered,ocean_shp)
Sys.time()
r <- raster(extent(sps),
nrows=(extent(sps)@ymax-extent(sps)@ymin)/2000,
ncols=(extent(sps)@xmax-extent(sps)@xmin)/2000,
crs=crs(sps),
vals=NA)
r <- projectRaster(from=r,crs=crs(land_shp))
## Now I have a raster of NAs, at the extent of EUCD, with Land projection
Sys.time()
r <- rasterize(land_shp, r) #Takes 4 minutes
#saveRDS(r,"raster_2000m_latlong.rds")
#readRDS("raster_2000m_latlong.rds") -> r
Sys.time()
## Old inefficient code
#r <- projectRaster(from=r,crs=crs(utm10_proj)) ## This distorts the raster
#p = as(r,"SpatialPoints")
#d <- gDistance(p, lines, byid=TRUE)
#
# system.time({ # Takes about 20 minutes
# rep(NA,length(sps)) -> near_ocean
# for (i in 1:length(sps)) {
# #localraster <- p[abs(p$x-sps[i]@coords[1,1])<10000 & abs(p$y-sps[i]@coords[1,2])<10000]
# #if (length(localraster)==0) {return(NA)}
# #gDistance(sps[i],localraster)# -> dest[i]
# extract(r,sps[i],buffer=8047) %>% unlist %>% as.integer %>% {1 %in% .} -> near_ocean[i]
# if (i %% 1000 ==0) {print(i)}
# }
# near_ocean -> loctable$near_ocean
# })
#write.csv(eucd,"eucd_near_ocean.csv")
Sys.time()
## Efficiently extract whether point is >5 miles from land, Takes 3 minutes
loctable$pelagic <-
extract(r,spTransform(sps,latlong_proj),
buffer=8047,fun=function(x){all(is.na(x))},na.rm=F)
Sys.time()
saveRDS(loctable,"loctable.rds")
loctable %>% nrow # 40,280
#readRDS("loctable.rds")
## Add "near_ocean" descriptor to EUCD main data frame
eucd$pelagic <-
left_join(eucd,loctable,by="locality_id") %>% use_series(pelagic)
eucd_pelagic <-
eucd %>% filter(pelagic==TRUE)
saveRDS(eucd_pelagic,file="eucd_pelagic.rds")
readRDS("eucd_pelagic.rds") -> eucd_pelagic
#### Export to Excel for pelagic verification ####
write.csv(eucd_pelagic,"eucd_pelagic.csv")
#### Did Excel verification of pelagic EUCD sightings here ####
#### RE-import, filter, and saveRDS
read.csv("eucd_pelagic_legit.csv",stringsAsFactors=F) -> eucd_pelagic
eucd_pelagic <-
eucd_pelagic %>%
filter(legit==1) %>%
filter(is.na(duplicate))
#saveRDS(eucd_pelagic,"eucd_pelagic.rds")