-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_DDPG.py
241 lines (198 loc) · 10.3 KB
/
main_DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import pickle
import gym
import numpy as np
import torch
from datetime import datetime
import time
import argparse
from envs.hopper_sparse import SparseHopperEnv
from envs.ant_sparse import SparseAntEnv
from envs.half_cheetah_sparse import SparseHalfCheetahEnv
from envs.walker_2d_sparse import SparseWalker2dEnv
import utils
import dateutil.tz
from algorithm import DDPG_GILD
from algorithm import DDPG_GILD_ws
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def evaluate_policy(policy, eval_env, eval_idx, total_step, eval_episodes=10):
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
action = policy.select_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print ("---------------------------------------")
print ("In Evaluation %d, Toal training step %d, avg_eval_reward over %d episodes: %f" % (eval_idx, total_step, eval_episodes, avg_reward))
print ("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env_name", default='Hopper-v2')
parser.add_argument('--sparse_env', default=1, type=int) # sparse environment . When 1(default), sparse; Otherwise, dense.
parser.add_argument("--method", default="DDPG_GILD_ws") # Policy name
parser.add_argument("--seed", default=8, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=1e4, type=int) # How many time steps purely random policy is run for
parser.add_argument("--eval_freq", default=5e3, type=float) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=float) # Max time steps to run environment for
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument('--actor_lr', type=float, default=3e-4) # learning rate
parser.add_argument('--critic_lr', type=float, default=3e-4) # learning rate
parser.add_argument('--gild_lr', type=float, default=1e-4) # learning rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--warm_start_timesteps", default=1e4, type=float) # warm start steps for GILD
parser.add_argument("--save_models", default=True, type=bool) # Whether or not models are saved
parser.add_argument("--save_freq", default=5e5, type=float) # How often (time steps) we save models
args = parser.parse_args()
# Create directory
now = datetime.now(dateutil.tz.tzlocal())
time_dir = now.strftime('%Y_%m_%d_%H_%M_%S')
if args.sparse_env == 1:
env_path = "%s(sparse)" % (args.env_name)
else:
env_path = "%s(dense)" % (args.env_name)
time_dir = ("%s/%s" % (env_path, time_dir))
if not os.path.exists('Results/%s/%s/' % (args.method, time_dir)):
os.makedirs('Results/%s/%s/' % (args.method, time_dir))
os.makedirs('Results/%s/%s/evaluation/' % (args.method, time_dir))
os.makedirs('Results/%s/%s/trained_models/' % (args.method, time_dir))
flags_log = os.path.join('Results/%s/%s/' % (args.method, time_dir), 'log.txt')
save_path = 'Results/{}/{}'.format(args.method,time_dir)
localtime = time.asctime(time.localtime(time.time()))
utils.write_log("localtime:", localtime, flags_log)
# # Build environment
if args.sparse_env == 1:
print(f"Running on sparse reward Env")
utils.write_log("Running on sparse reward Env ", args.env_name, flags_log)
if args.env_name == "Hopper-v2":
args.seed = 8
args.sparse_val = 1.
env = SparseHopperEnv(args.sparse_val)
eval_env = gym.make(args.env_name)
elif args.env_name == 'Walker2d-v2':
args.seed = 9
args.sparse_val = 1.
env = SparseWalker2dEnv(args.sparse_val)
eval_env = gym.make(args.env_name)
elif args.env_name == 'HalfCheetah-v2':
args.seed = 8
args.sparse_val = 2.
env = SparseHalfCheetahEnv(args.sparse_val)
eval_env = gym.make(args.env_name)
elif args.env_name == 'Ant-v2':
args.seed = 9
args.sparse_val = 1.
env = SparseAntEnv(args.sparse_val)
eval_env = gym.make(args.env_name)
else:
utils.write_log("Running on custom dense rewardEnv ", args.env_name, flags_log)
print('Running on custom dense reward Env', args.env_name)
env = gym.make(args.env_name)
args.data_path = 'Traj_Data/%s_data.p' % (args.env_name)
eval_env = gym.make(args.env_name)
# Set seeds
env.seed(args.seed)
eval_env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# load demonstration data
il_method = 'DDPG'
args.data_path = 'Traj_Data/Traj_Behavior_%s_%s.p' % (args.env_name, il_method)
demo_traj = pickle.load(open(args.data_path, "rb"))
# Initialize policy
if 'ws' in args.method:
policy = DDPG_GILD_ws.DDPG_GILD(state_dim, action_dim, max_action, demo_traj, args)
else:
policy = DDPG_GILD.DDPG_GILD(state_dim, action_dim, max_action, demo_traj, args)
replay_buffer = utils.ReplayBuffer(state_dim, action_dim)
# # Store the parameter
utils.write_log("args:", args, flags_log)
# Evaluate untrained policy
eval_idx = 0
avg_reward = evaluate_policy(policy, eval_env, eval_idx, 0)
eval_idx += 1
evaluation_rewards = [avg_reward]
utils.write_log("------------------------------------------------------------------------------","", flags_log)
utils.write_log("", "After episode %d, Total step %d, Average evaluation reward over 10 episodes: %f" % (
0, 0, avg_reward), flags_log)
utils.write_log("------------------------------------------------------------------------------","", flags_log)
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
max_episode_steps = eval_env._max_episode_steps
for t in range(int(args.max_timesteps)):
episode_timesteps += 1
# Select action randomly or according to policy
if t < args.start_timesteps:
action = env.action_space.sample()
else:
action = (
policy.select_action(np.array(state))
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action) # select action with noise
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if episode_timesteps < max_episode_steps else 0
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if t >= args.start_timesteps:
policy.train(replay_buffer, args.batch_size)
if done:
utils.write_log("", "Total T %d Episode Num %d Episode T %d Eposide reward %f" % (
t, episode_num, episode_timesteps, episode_reward), flags_log)
# Reset environment
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Evaluate episode
if (t) % args.eval_freq == 0:
avg_reward = evaluate_policy(policy, eval_env, eval_idx, t)
eval_idx += 1
evaluation_rewards.append(avg_reward)
np.save('%s/evaluation/evaluation_reward.npy' % (save_path), evaluation_rewards)
utils.write_log("------------------------------------------------------------------------------","", flags_log)
utils.write_log("", "After episode %d, Total step %d, Average evaluation reward over 10 episodes: %f" % (
episode_num, t, avg_reward), flags_log)
utils.write_log("------------------------------------------------------------------------------","", flags_log)
# Save period models
if args.save_models:
if (t) % args.save_freq == 0:
model_period = 'step%d_epi%d' %(t, episode_num)
if not os.path.exists('%s/trained_models/%s/' % (save_path, model_period)):
os.makedirs('%s/trained_models/%s/' % (save_path, model_period))
policy.save(save_path, model_period)
# Final evaluation
avg_reward = evaluate_policy(policy, eval_env, eval_idx, t)
eval_idx += 1
evaluation_rewards.append(avg_reward)
utils.write_log("------------------------------------------------------------------------------","", flags_log)
utils.write_log("", "After episode %d, Total step %d, Average evaluation reward over 10 episodes: %f" % (
episode_num, t, avg_reward), flags_log)
utils.write_log("------------------------------------------------------------------------------","", flags_log)
np.save('%s/evaluation/evaluation_reward.npy' % (save_path), evaluation_rewards)
# Save final models
if args.save_models:
model_period = 'step%d_epi%d' % (t, episode_num)
if not os.path.exists('%s/trained_models/%s/' % (save_path, model_period)):
os.makedirs('%s/trained_models/%s/' % (save_path, model_period))
policy.save(save_path, model_period)
utils.plot_results(save_path)
env.close()