-
Notifications
You must be signed in to change notification settings - Fork 5
/
am_tuning_new.py
457 lines (370 loc) · 20.9 KB
/
am_tuning_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
'''
Tuning curve presentation paradigm: allows presentation of tones at different
magnitudes, and will send triggers to electrophysiology recording software.
Nick Ponvert and Santiago Jaramillo
'''
from qtpy import QtWidgets
from taskontrol import dispatcher
from taskontrol import paramgui
from taskontrol import savedata
from taskontrol import statematrix
from taskontrol.plugins import speakercalibration
from taskontrol.plugins import manualcontrol
from taskontrol.plugins import soundclient
from taskontrol import rigsettings
import numpy as np
from numpy import log
import itertools
import random
import time
# class clearButton(QtWidgets.QPushButton):
# def __init__(self, parent=None):
# super(OutputButton, self).__init__('Clear Tone List')
# self.clicked.connect(self.clear_tone_list)
if 'outBit1' in rigsettings.OUTPUTS:
trialStartSync = ['outBit1'] # Sync signal for trial-start.
else:
trialStartSync = []
if 'outBit0' in rigsettings.OUTPUTS:
stimSync = ['outBit0'] # Sync signal for sound stimulus
else:
stimSync = []
if 'outBit2' in rigsettings.OUTPUTS:
laserSync = ['outBit2','stim2'] # Sync signal for laser
else:
laserSync = ['centerLED'] # Use center LED during emulation
class Paradigm(QtWidgets.QMainWindow):
def __init__(self, parent=None, paramfile=None, paramdictname=None):
'''
Set up the taskontrol core modules, add parameters to the GUI, and
initialize the sound server.
'''
super(Paradigm, self).__init__(parent)
self.name = 'am_tuning_curve'
# -- Read settings --
smServerType = rigsettings.STATE_MACHINE_TYPE
# -- Create the speaker calibration object
self.spkCal = speakercalibration.Calibration(rigsettings.SPEAKER_CALIBRATION_SINE)
self.noiseCal = speakercalibration.NoiseCalibration(rigsettings.SPEAKER_CALIBRATION_NOISE)
# -- Create dispatcher --
self.dispatcherModel = dispatcher.Dispatcher(serverType=smServerType,
interval=0.1)
self.dispatcherView = dispatcher.DispatcherGUI(model=self.dispatcherModel)
# -- Manual control of outputs --
self.manualControl = manualcontrol.ManualControl(self.dispatcherModel.statemachine)
# -- Add parameters --
self.params = paramgui.Container()
self.params['experimenter'] = paramgui.StringParam('Experimenter',
value='santiago',
group='Session Parameters')
self.params['subject'] = paramgui.StringParam('Subject',value='test000',
group='Session Parameters')
sessionParams = self.params.layout_group('Session Parameters')
self.params['minFreq'] = paramgui.NumericParam('Min Frequency (Hz)',
value=2000,
group='Stim Parameters')
self.params['maxFreq'] = paramgui.NumericParam('Max Frequency (Hz)',
value=40000,
group='Stim Parameters')
self.params['numTones'] = paramgui.NumericParam('Number of Frequencies',
value=16,
group='Stim Parameters')
self.params['minInt'] = paramgui.NumericParam('Min Intensity (dB SPL)',
value=60,
group='Stim Parameters')
self.params['maxInt'] = paramgui.NumericParam('Max Intensity (dB SPL)',
value=60,
group='Stim Parameters')
self.params['numInt'] = paramgui.NumericParam('Number of Intensities',
value=1,
group='Stim Parameters')
self.params['stimDur'] = paramgui.NumericParam('Stimulus Duration (s)',
value=0.01,
group='Stim Parameters')
'''
self.params['isiMin'] = paramgui.NumericParam('Minimum Interstimulus Interval (s)',
value=1,
group='Stim Parameters')
self.params['isiMax'] = paramgui.NumericParam('Maximum Interstimulus Interval',
value=3,
group='Stim Parameters')
'''
self.params['isiMean'] = paramgui.NumericParam('Interstimulus interval mean (s)',
value=2,
group='Stim Parameters')
self.params['isiHalfRange'] = paramgui.NumericParam('+/-',
value=1,
group='Stim Parameters')
# self.params['noiseAmp'] = paramgui.NumericParam('Amplitude in Noise-Mode',
# value=0.3,
# group='Stim Parameters')
self.params['randomMode'] = paramgui.MenuParam('Presentation Mode',
['Ordered','Random'],
value=1,group='Stim Parameters')
self.params['stimType'] = paramgui.MenuParam('Stim Type',
['Sine','Chord', 'Noise', 'AM', 'Laser', 'LaserTrain', 'Light'],
value=2,group='Stim Parameters')
self.params['currentFreq'] = paramgui.NumericParam('Current Frequency (Hz)',
value=0, units='Hz',
enabled=False, decimals=3,
group='Stim Parameters')
self.params['currentIntensity'] = paramgui.NumericParam('Target Intensity',
value=0,
enabled=False,
group='Stim Parameters')
self.params['currentAmpL'] = paramgui.NumericParam('Current Amplitude - L',value=0,
enabled=False,
group='Stim Parameters',
decimals=4)
self.params['currentAmpR'] = paramgui.NumericParam('Current Amplitude - R',value=0,
enabled=False,
group='Stim Parameters',
decimals=4)
self.params['laserTrialsFraction'] = paramgui.NumericParam('Fraction of trials with laser',
value=0,
group='Laser Parameters')
#self.params['laserType'] = paramgui.MenuParam('Laser colour',
# ['blue', 'green'],
# value=1,group='Laser Parameters')
self.params['laserFrontOverhang'] = paramgui.NumericParam('Laser Front Overhang',value=0,
group='Laser Parameters', enabled=False,
decimals=1)
self.params['laserBackOverhang'] = paramgui.NumericParam('Laser Back Overhang',value=0,
group='Laser Parameters', enabled=False,
decimals=1)
self.params['laserTrial'] = paramgui.NumericParam('Laser Trial?',value=0,
enabled=False,
group='Laser Parameters',
decimals=0)
laserParams = self.params.layout_group('Laser Parameters')
stimParams = self.params.layout_group('Stim Parameters')
# -- Load parameters from a file --
self.params.from_file(paramfile,paramdictname)
# -- Create an empty state matrix --
self.sm = statematrix.StateMatrix(inputs=rigsettings.INPUTS,
outputs=rigsettings.OUTPUTS,
readystate='readyForNextTrial')
# -- Module for savng the data --
self.saveData = savedata.SaveData(rigsettings.DATA_DIR,
remotedir=rigsettings.REMOTE_DIR)
self.saveData.checkInteractive.setChecked(True)
# -- Add graphical widgets to main window --
self.centralWidget = QtWidgets.QWidget()
layoutMain = QtWidgets.QHBoxLayout() #Create a main layout and two columns
layoutCol1 = QtWidgets.QVBoxLayout()
layoutCol2 = QtWidgets.QVBoxLayout()
layoutMain.addLayout(layoutCol1) #Add the columns to the main layout
layoutMain.addLayout(layoutCol2)
layoutCol1.addWidget(self.dispatcherView) #Add the dispatcher to col1
layoutCol1.addWidget(self.saveData)
layoutCol1.addWidget(self.manualControl)
self.clearButton = QtWidgets.QPushButton('Clear Stim List', self)
self.clearButton.clicked.connect(self.clear_tone_list)
layoutCol1.addWidget(self.clearButton)
layoutCol2.addWidget(sessionParams)
layoutCol2.addWidget(stimParams) #Add the parameter GUI to column 2
#layoutCol2.addStretch()
layoutCol2.addWidget(laserParams) #Add the parameter GUI to column 2
self.centralWidget.setLayout(layoutMain) #Assign the layouts to the main window
self.setCentralWidget(self.centralWidget)
# -- Connect signals from dispatcher --
#prepare_next_trial is sent whenever the dispatcher reaches the end of
#the current trial.
self.dispatcherModel.prepareNextTrial.connect(self.prepare_next_trial)
# -- Connect the save data button --
self.saveData.buttonSaveData.clicked.connect(self.save_to_file)
print("Connecting to sound server")
print('***** FIXME: HARDCODED TIME DELAY TO WAIT FOR SERIAL PORT! *****')
time.sleep(0.2)
self.soundClient = soundclient.SoundClient()
self.soundClient.start()
#soundFreq = self.params['soundFreq'].get_value()
# -- Initialize the list of trial parameters --
self.trialParams = []
self.soundParamList = []
def populate_sound_params(self):
'''This function reads the GUI inputs and populates a list of three-item tuples
containing the frequency, and amplitude for each trial. This function is
called by prepare_next_trial at the beginning of the experiment and whenever
we run out of combinations of sounds to present'''
## -- Get the parameters --
maxFreq = self.params['maxFreq'].get_value()
minFreq = self.params['minFreq'].get_value()
numFreqs = self.params['numTones'].get_value()
# -- Create a list of frequencies --
# toneList = self.logscale(minFreq, maxFreq, numFreqs)
toneList = np.logspace(np.log10(minFreq), np.log10(maxFreq),num = numFreqs)
minInt = self.params['minInt'].get_value()
maxInt = self.params['maxInt'].get_value()
numInt = self.params['numInt'].get_value()
ampList = np.linspace(minInt, maxInt, num=numInt)
# -- Make a tuple list of all of the products of the three parameter lists
productList = list(itertools.product(toneList, ampList))
# -- If in random presentation mode, shuffle the list of products
randomMode = self.params['randomMode'].get_string()
if randomMode == 'Random':
random.shuffle(productList)
else:
pass
# -- Set the sound parameter list to the product list
self.soundParamList = productList
def logscale(self, minFreq, maxFreq, numFreqs):
'''This function returns a specified number of frequencies
scaled logarithmically between a minimum and maximum val'''
slope=(log(maxFreq)-log(minFreq))/(numFreqs-1)
xVals=range(numFreqs)
logs=[slope * x + log(minFreq) for x in xVals]
logs=np.array(logs)
vals=np.exp(logs)
return vals
def prepare_next_trial(self, nextTrial):
'''
Prepare the target sound, send state matrix to the statemachine, and
update the list of GUI parameters so that we can save the history of the
frequency, intensity, and amplitude parameters for each trial.
'''
if nextTrial > 0: ## Do not update the history before the first trial
self.params.update_history(nextTrial-1)
self.sm.reset_transitions()
## -- Choose an ISI randomly
'''
minIsi = self.params['isiMin'].get_value()
maxIsi = self.params['isiMax'].get_value()
isi=np.random.random() * (maxIsi - minIsi) + minIsi
'''
randNum = (2*np.random.random(1)[0]-1) # In range [-1,1)
isi = self.params['isiMean'].get_value() + \
self.params['isiHalfRange'].get_value()*randNum
# -- Get the sound parameters from the parameter list --
# -- If the parameter list is empty, populate it --
# -- returns a tuple with (frequency, intensity)
try:
self.trialParams = self.soundParamList.pop(0) #pop(0) pops from the left
except IndexError:
self.populate_sound_params()
self.trialParams = self.soundParamList.pop(0)
# -- Prepare the sound using randomly chosen parameters from parameter lists --
stimType = self.params['stimType'].get_string()
stimDur = self.params['stimDur'].get_value()
#We used this until 2016-08-04, then changed it to the thing below
# targetAmp = self.spkCal.find_amplitude(self.trialParams[0],
# self.trialParams[1])[1]
# #Only calibrated right speaker
if stimType in ['Noise', 'AM']:
targetAmp = self.noiseCal.find_amplitude(self.trialParams[1])
else:
targetAmp = self.spkCal.find_amplitude(self.trialParams[0],
self.trialParams[1])
#Now returning a list instead of a single val
# -- Determine the sound presentation mode and prepare the appropriate sound
if stimType == 'Sine':
sound = {'type':'tone', 'duration':stimDur,
'amplitude':targetAmp, 'frequency':self.trialParams[0]}
elif stimType == 'Chord':
sound = {'type':'chord', 'frequency':self.trialParams[0], 'duration':stimDur,
'amplitude':targetAmp, 'ntones':12, 'factor':1.2}
elif stimType == 'Noise':
sound = {'type':'noise', 'duration':stimDur,
'amplitude':targetAmp}
elif stimType == 'AM':
sound = {'type':'AM', 'duration':stimDur,
'amplitude':targetAmp,'modFrequency':self.trialParams[0]}
fractionLaserTrials = self.params['laserTrialsFraction'].get_value()
laserTrial = np.random.rand(1)[0]<fractionLaserTrials
self.params['laserTrial'].set_value(int(laserTrial))
if (stimType == 'Laser') or (stimType == 'LaserTrain'):
stimOutput = stimSync+laserSync
serialOutput = 0
elif stimType=='Light':
stimOutput = stimSync + ['leftLED', 'centerLED', 'rightLED']
if laserTrial:
stimOutput = stimOutput + laserSync
serialOutput = 0
else:
stimOutput = stimSync
if laserTrial:
stimOutput = stimOutput + laserSync
serialOutput = 1
self.soundClient.set_sound(1,sound)
self.params['currentFreq'].set_value(self.trialParams[0])
self.params['currentIntensity'].set_value(self.trialParams[1])
self.params['currentAmpL'].set_value(targetAmp[0])
self.params['currentAmpR'].set_value(targetAmp[1])
# -- Prepare the state transition matrix --
soa = 0.2
if stimType == 'LaserTrain':
self.sm.add_state(name='startTrial', statetimer = 0,
transitions={'Tup':'output1On'})
self.sm.add_state(name='output1On', statetimer=stimDur,
transitions={'Tup':'output1Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output1Off', statetimer = soa-stimDur,
transitions={'Tup':'output2On'},
outputsOff=stimOutput)
self.sm.add_state(name='output2On', statetimer=stimDur,
transitions={'Tup':'output2Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output2Off', statetimer = soa-stimDur,
transitions={'Tup':'output3On'},
outputsOff=stimOutput)
self.sm.add_state(name='output3On', statetimer=stimDur,
transitions={'Tup':'output3Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output3Off', statetimer = soa-stimDur,
transitions={'Tup':'output4On'},
outputsOff=stimOutput)
self.sm.add_state(name='output4On', statetimer=stimDur,
transitions={'Tup':'output4Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output4Off', statetimer = soa-stimDur,
transitions={'Tup':'output5On'},
outputsOff=stimOutput)
self.sm.add_state(name='output5On', statetimer=stimDur,
transitions={'Tup':'output5Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output5Off', statetimer = isi,
transitions={'Tup':'readyForNextTrial'},
outputsOff=stimOutput)
else:
self.sm.add_state(name='startTrial', statetimer = 0,
transitions={'Tup':'output1On'})
self.sm.add_state(name='output1On', statetimer=stimDur,
transitions={'Tup':'output1Off'},
outputsOn=stimOutput,
serialOut=serialOutput)
self.sm.add_state(name='output1Off', statetimer = isi,
transitions={'Tup':'readyForNextTrial'},
outputsOff=stimOutput)
self.dispatcherModel.set_state_matrix(self.sm)
self.dispatcherModel.ready_to_start_trial()
#def _timer_tic(self, etime, lastEvents):
# #timer_tic is sent whenever the dispatcher gets information from the Arduino
# pass
def save_to_file(self):
'''Triggered by button-clicked signal'''
self.saveData.to_file([self.params, self.dispatcherModel,
self.sm],
self.dispatcherModel.currentTrial,
experimenter='',
subject=self.params['subject'].get_value(),
paradigm=self.name)
def clear_tone_list(self):
'''Allow the user to clear the list of tones and assign new tones from the GUI'''
print(self.soundParamList)
self.soundParamList = []
print(self.soundParamList)
def closeEvent(self, event):
'''
Executed when closing the main window.
This method is inherited from QtWidgets.QMainWindow, which explains
its camelCase naming.
'''
self.dispatcherModel.die()
event.accept()
if __name__ == "__main__":
(app,paradigm) = paramgui.create_app(Paradigm)