forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tests.qs
551 lines (456 loc) · 24.6 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.GraphColoring {
open Microsoft.Quantum.Logical;
open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Diagnostics;
open Quantum.Kata.Utils;
//////////////////////////////////////////////////////////////////
// Part I. Colors representation and manipulation
//////////////////////////////////////////////////////////////////
@Test("QuantumSimulator")
operation T11_InitializeColor () : Unit {
for N in 1 .. 4 {
use register = Qubit[N];
for C in 0 .. (1 <<< N) - 1 {
InitializeColor(C, register);
let measurementResults = MultiM(register);
Fact(ResultArrayAsInt(measurementResults) == C,
$"Unexpected initialization result for N = {N}, C = {C} : {measurementResults}");
ResetAll(register);
}
}
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T12_MeasureColor () : Unit {
for N in 1 .. 4 {
use register = Qubit[N];
for C in 0 .. (1 <<< N) - 1 {
// prepare the register in the input state
InitializeColor_Reference(C, register);
// call the solution and verify its return value
let result = MeasureColor(register);
Fact(result == C, $"Unexpected measurement result for N = {N}, C = {C} : {result}");
// verify that the register remained in the same state
Adjoint InitializeColor_Reference(C, register);
AssertAllZero(register);
}
}
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T13_MeasureColoring () : Unit {
for K in 1 .. 3 {
for N in 1 .. 3 {
use register = Qubit[N * K];
for state in 0 .. (1 <<< (N * K)) - 1 {
// prepare the register in the input state
let binaryState = IntAsBoolArray(state, N * K);
ApplyPauliFromBitString(PauliX, true, binaryState, register);
// call the solution
let result = MeasureColoring(K, register);
// get the expected coloring by splitting binaryState into parts and converting them into integers
let partitions = Chunks(N, binaryState);
let expectedColors = ForEach(FunctionAsOperation(BoolArrayAsInt), partitions);
// verify the return value
Fact(Length(result) == K, $"Unexpected number of colors for N = {N}, K = {K} : {Length(result)}");
for (expected, actual) in Zipped(expectedColors, result) {
Fact(expected == actual, $"Unexpected color for N = {N}, K = {K} : expected {expectedColors}, got {result}");
}
// verify that the register remained in the same state
ApplyPauliFromBitString(PauliX, true, binaryState, register);
AssertAllZero(register);
}
}
}
}
// ------------------------------------------------------
operation CheckColorEqualityOracle (N : Int, oracle : ((Qubit[], Qubit[], Qubit) => Unit)) : Unit {
use (register0, register1, target) = (Qubit[N], Qubit[N], Qubit());
for state in 0 .. (1 <<< (2 * N)) - 1 {
// prepare the register in the input state
InitializeColor_Reference(state, register0 + register1);
// apply the oracle
oracle(register0, register1, target);
// check that the result is what we'd expect
let expectedEquality = (state >>> N) == (state % (1 <<< N));
AssertQubit(expectedEquality ? One | Zero, target);
Reset(target);
// verify that the input registers remained in the same state
Adjoint InitializeColor_Reference(state, register0 + register1);
AssertAllZero(register0);
AssertAllZero(register1);
}
}
// helper wrapper to represent oracle operation on two input registers of equal size and output register of size 1
// as an operation on an array of qubits
operation WrapperOperation (op : ((Qubit[], Qubit[], Qubit) => Unit is Adj), qs : Qubit[]) : Unit is Adj {
let N = (Length(qs) - 1) / 2;
op(qs[0 .. N - 1], qs[N .. 2 * N - 1], qs[2 * N]);
}
@Test("QuantumSimulator")
operation T14_ColorEqualityOracle_2bit () : Unit {
CheckColorEqualityOracle(2, ColorEqualityOracle_2bit);
AssertOperationsEqualReferenced(5, WrapperOperation(ColorEqualityOracle_2bit, _),
WrapperOperation(ColorEqualityOracle_2bit_Reference, _));
}
// ------------------------------------------------------
@Test("QuantumSimulator")
operation T15_ColorEqualityOracle_Nbit () : Unit {
for N in 1..4 {
within {
AllowAtMostNQubits(2*N+1, "You are not allowed to allocate extra qubits");
} apply {
CheckColorEqualityOracle(N, ColorEqualityOracle_Nbit);
}
AssertOperationsEqualReferenced(2*N+1, WrapperOperation(ColorEqualityOracle_Nbit, _),
WrapperOperation(ColorEqualityOracle_Nbit_Reference, _));
}
}
//////////////////////////////////////////////////////////////////
// Part II. Vertex coloring problem
//////////////////////////////////////////////////////////////////
// Hardcoded graphs used for testing the vertex coloring problem:
// - trivial graph with zero edges
// - complete graph with 4 vertices (4-colorable)
// - disconnected graph
// - random connected graph with more edges and vertices (3-colorable)
// - regular-ish graph with 5 vertices (3-colorable, as shown at https://en.wikipedia.org/wiki/File:3-coloringEx.svg without one vertex)
// - 6-vertex graph from https://en.wikipedia.org/wiki/File:3-coloringEx.svg
function ExampleGraphs () : (Int, (Int, Int)[])[] {
return [(3, []),
(4, [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]),
(5, [(4, 0), (2, 1), (3, 1), (3, 2)]),
(5, [(0, 1), (1, 2), (1, 3), (3, 2), (4, 2), (3, 4)]),
(5, [(0, 1), (0, 2), (0, 4), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4)]),
(6, [(0, 1), (0, 2), (0, 4), (0, 5), (1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)])];
// Graphs with 6+ vertices can take several minutes to be processed;
// in the interest of keeping test runtime reasonable we're limiting most of the testing to graphs with 5 vertices or fewer.
}
@Test("QuantumSimulator")
operation T21_IsVertexColoringValid () : Unit {
let testCases = ExampleGraphs();
let (V0, edges0) = testCases[0];
Fact(IsVertexColoringValid(V0, edges0, [0, 0, 0]) == true,
$"Coloring [0, 0, 0] judged incorrect for graph V = {V0}, edges = {edges0}");
Fact(IsVertexColoringValid(V0, edges0, [2, 1, 3]) == true,
$"Coloring [2, 1, 3] judged incorrect for graph V = {V0}, edges = {edges0}");
let (V1, edges1) = testCases[1];
Fact(IsVertexColoringValid(V1, edges1, [0, 2, 1, 3]) == true,
$"Coloring [0, 2, 1, 3] judged incorrect for graph V = {V1}, edges = {edges1}");
Fact(IsVertexColoringValid(V1, edges1, [3, 0, 1, 2]) == true,
$"Coloring [3, 0, 1, 2] judged incorrect for graph V = {V1}, edges = {edges1}");
Fact(IsVertexColoringValid(V1, edges1, [0, 2, 1, 0]) == false,
$"Coloring [0, 2, 1, 0] judged correct for graph V = {V1}, edges = {edges1}");
let (V2, edges2) = testCases[2];
// note that in this task the coloring does not have to be limited to numbers 0 .. 3, like in the next task
Fact(IsVertexColoringValid(V2, edges2, [0, 1, 2, 3, 4]) == true,
$"Coloring [0, 1, 2, 3, 4] judged incorrect for graph V = {V2}, edges = {edges2}");
Fact(IsVertexColoringValid(V2, edges2, [0, 2, 1, 0, 3]) == true,
$"Coloring [0, 2, 1, 0, 3] judged incorrect for graph V = {V2}, edges = {edges2}");
Fact(IsVertexColoringValid(V2, edges2, [1, 0, 1, 2, 1]) == false,
$"Coloring [1, 0, 1, 2, 1] judged correct for graph V = {V2}, edges = {edges2}");
Fact(IsVertexColoringValid(V2, edges2, [0, 0, 0, 0, 0]) == false,
$"Coloring [0, 0, 0, 0, 0] judged correct for graph V = {V2}, edges = {edges2}");
let (V3, edges3) = testCases[3];
Fact(IsVertexColoringValid(V3, edges3, [0, 1, 0, 2, 1]) == true,
$"Coloring [0, 1, 0, 2, 1] judged incorrect for graph V = {V3}, edges = {edges3}");
Fact(IsVertexColoringValid(V3, edges3, [0, 2, 0, 1, 3]) == true,
$"Coloring [0, 2, 0, 1, 3] judged incorrect for graph V = {V3}, edges = {edges3}");
Fact(IsVertexColoringValid(V3, edges3, [0, 1, 0, 1, 2]) == false,
$"Coloring [0, 1, 0, 1, 2] judged correct for graph V = {V3}, edges = {edges3}");
let (V4, edges4) = testCases[4];
Fact(IsVertexColoringValid(V4, edges4, [1, 2, 3, 1, 2]) == true,
$"Coloring [1, 2, 3, 1, 2] judged incorrect for graph V = {V4}, edges = {edges4}");
Fact(IsVertexColoringValid(V4, edges4, [1, 2, 3, 4, 1]) == false,
$"Coloring [1, 2, 3, 4, 1] judged correct for graph V = {V4}, edges = {edges4}");
}
// ------------------------------------------------------
operation QubitArrayWrapperOperation (op : ((Qubit[], Qubit) => Unit is Adj), qs : Qubit[]) : Unit is Adj {
op(Most(qs), Tail(qs));
}
operation AssertOracleRecognizesColoring (
V : Int,
edges : (Int, Int)[],
oracle : ((Int, (Int, Int)[],Qubit[], Qubit) => Unit),
classicalFunction : ((Int, (Int, Int)[], Int[]) -> Bool)
) : Unit {
Message($"Testing V = {V}, edges = {edges}");
let N = 2 * V;
use (coloringRegister, target) = (Qubit[N], Qubit());
// Try all possible colorings of 4 colors on V vertices and check if they are calculated correctly.
// Hack: fix the color of the first vertex, since all colorings are agnostic to the specific colors used.
for k in 0 .. (1 <<< (N - 2)) - 1 {
// Prepare k-th coloring
let binary = [false, false] + IntAsBoolArray(k, N);
ApplyPauliFromBitString(PauliX, true, binary, coloringRegister);
// Read out the coloring (convert one bitmask into V integers) - does not change the state
let coloring = MeasureColoring_Reference(V, coloringRegister);
// Apply the oracle
oracle(V, edges, coloringRegister, target);
// Check that the oracle result matches the classical result
let val = classicalFunction(V, edges, coloring);
// Message($"bitmask = {binary}, coloring = {coloring} - expected answer = {val}");
AssertQubit(val ? One | Zero, target);
Reset(target);
// Check that the coloring qubits are still in the same state
ApplyPauliFromBitString(PauliX, true, binary, coloringRegister);
AssertAllZero(coloringRegister);
}
}
@Test("QuantumSimulator")
operation T22_VertexColoringOracle () : Unit {
// Run test on all test cases except the last one
for (V, edges) in Most(ExampleGraphs()) {
AssertOracleRecognizesColoring(V, edges, VertexColoringOracle, IsVertexColoringValid_Reference);
}
}
@Test("QuantumSimulator")
operation T23_GroversAlgorithm () : Unit {
for (V, edges) in ExampleGraphs() {
Message($"Running on graph V = {V}, edges = {edges}");
let coloring = GroversAlgorithm(V, VertexColoringOracle_Reference(V, edges, _, _));
Fact(IsVertexColoringValid_Reference(V, edges, coloring),
$"Got incorrect coloring {coloring}");
Message($"Got correct coloring {coloring}");
}
}
//////////////////////////////////////////////////////////////////
// Part III. Weak coloring problem
//////////////////////////////////////////////////////////////////
@Test("QuantumSimulator")
operation T31_DoesEdgeContainVertex () : Unit {
Fact(DoesEdgeContainVertex((1,2), 1) == true,
$"Edge (1, 2) should contain vertex 1");
Fact(DoesEdgeContainVertex((1,2), 2) == true,
$"Edge (1, 2) should contain vertex 2");
Fact(DoesEdgeContainVertex((1,2), 3) == false,
$"Edge (1, 2) should not contain vertex 2");
}
@Test("QuantumSimulator")
operation T32_IsVertexWeaklyColored () : Unit {
let testCases = Most(ExampleGraphs());
let colorings = [[0, 0, 0],
[3, 2, 0, 0],
[1, 0, 1, 2, 1],
[0, 0, 1, 1, 1],
[0, 1, 1, 1, 1]
];
let expectedResults = [[true, true, true],
[true, true, true, true],
[false, true, true, true, false],
[false, true, true, true, false],
[true, true, true, false, true]
];
for ((V, edges), coloring, expectedResult) in Zipped3(testCases, colorings, expectedResults) {
for vertex in 0 .. V - 1 {
Fact(IsVertexWeaklyColored(V, edges, coloring, vertex) == expectedResult[vertex],
$"Vertex = {vertex} judged{(not expectedResult[vertex]) ? "" | " not"} weakly colored for coloring = {coloring}, edges = {edges}");
}
}
}
@Test("QuantumSimulator")
operation T33_IsWeakColoringValid () : Unit {
let testCases = Most(ExampleGraphs());
// Every coloring would pass on a disconnected graph of 3 vertices
let exampleColoringForThreeVertices = [[0, 0, 0], [2, 1, 3]];
// Every coloring would pass on a fully connected graph of 4 vertices;
// except for the colorings in which all vertices are of the same color
let exampleColoringForFourVertices = [[0, 2, 1, 3], [3, 2, 0, 0], [0, 0, 0, 0] ];
let exampleColoringForFiveVertices = [
// Graph coloring that fails in all types of graphs, except fully disconnected graphs
[0, 0, 0, 0, 0],
// Graph coloring that passes all types of graphs regardless of their structure
[0, 1, 2, 3, 4],
// Random coloring that fails the third graph, and passes the fourth and fifth one
[0, 1, 1, 2, 0],
// Random coloring that fails the fourth graph, and passes the third and fifth one
[0, 0, 1, 1, 1]
// Note any colorings that pass the third or the fourth graph
// will also pass the fifth graph since fifth graph has all the edges contained
// in the third and fourth graph
];
let coloringAndVerdicts0 = Zipped(exampleColoringForThreeVertices, [true, true]);
let coloringAndVerdicts1 = Zipped(exampleColoringForFourVertices, [true, true, false]);
let coloringAndVerdicts2 = Zipped(exampleColoringForFiveVertices, [false, true, false, true]);
let coloringAndVerdicts3 = Zipped(exampleColoringForFiveVertices, [false, true, true, false]);
let coloringAndVerdicts4 = Zipped(exampleColoringForFiveVertices, [false, true, true, true]);
let fullTestCases = Zipped(testCases, [
coloringAndVerdicts0,
coloringAndVerdicts1,
coloringAndVerdicts2,
coloringAndVerdicts3,
coloringAndVerdicts4
]);
for (testCase, coloringAndVerdicts) in fullTestCases {
let (V, edges) = testCase;
for (coloring,expectedResult) in coloringAndVerdicts {
Fact(IsWeakColoringValid(V, edges, coloring) == expectedResult,
$"Coloring {coloring} judged {(not expectedResult) ? "" | " not"} weakly colored for graph V = {V}, edges = {edges}");
}
}
}
@Test("QuantumSimulator")
operation T34_WeaklyColoredVertexOracle() : Unit {
for (V, edges) in Most(ExampleGraphs()) {
for vertex in 0 .. V - 1 {
AssertOracleRecognizesColoring(V, edges, WeaklyColoredVertexOracle(_, _, _, _, vertex), IsVertexWeaklyColored_Reference(_, _, _, vertex));
}
}
}
@Test("QuantumSimulator")
operation T35_WeakColoringOracle () : Unit {
// Run test on the first three test cases
for (V, edges) in (ExampleGraphs())[... 3] {
AssertOracleRecognizesColoring(V, edges, WeakColoringOracle, IsWeakColoringValid_Reference);
}
}
@Test("QuantumSimulator")
operation T36_GroversAlgorithmForWeakColoring () : Unit {
for (V, edges) in ExampleGraphs() {
Message($"Running on graph V = {V}, edges = {edges}");
let coloring = GroversAlgorithmForWeakColoring(V, WeakColoringOracle_Reference(V, edges, _, _));
Fact(IsWeakColoringValid_Reference(V, edges, coloring),
$"Got incorrect coloring {coloring}");
Message($"Got correct coloring {coloring}");
}
}
//////////////////////////////////////////////////////////////////
// Part IV. Triangle-free coloring problem
//////////////////////////////////////////////////////////////////
@Test("QuantumSimulator")
operation T41_EdgesListAsAdjacencyMatrix () : Unit {
for (V, edges) in ExampleGraphs() {
Message($"Running on graph V = {V}, edges = {edges}");
let actualAdjMatrix = EdgesListAsAdjacencyMatrix(V, edges);
let expectedAdjMatrix = EdgesListAsAdjacencyMatrix_Reference(V, edges);
let equal = EqualA(EqualA(EqualI, _, _), actualAdjMatrix, expectedAdjMatrix);
Fact(equal, $"Got incorrect adjacency matrix {actualAdjMatrix}");
Message($"Got correct adjacency matrix");
}
}
function EqualTriplet(t1 : (Int, Int, Int), t2 : (Int, Int, Int)) : Bool {
let (p1, q1, r1) = t1;
let (p2, q2, r2) = t2;
return p1 == p2 and q1 == q2 and r1 == r2;
}
@Test("QuantumSimulator")
operation T42_AdjacencyMatrixAsTrianglesList () : Unit {
for (V, edges) in ExampleGraphs() {
Message($"Running on graph V = {V}, edges = {edges}");
let adjMatrix = EdgesListAsAdjacencyMatrix_Reference(V, edges);
let actualTrianglesList = AdjacencyMatrixAsTrianglesList(V, adjMatrix);
let expectedTrianglesList = AdjacencyMatrixAsTrianglesList_Reference(V, adjMatrix);
let equal = EqualA(EqualTriplet, actualTrianglesList, expectedTrianglesList);
Fact(equal, $"Got incorrect triangles list {actualTrianglesList}");
Message($"Got correct triangles list");
}
}
@Test("QuantumSimulator")
operation T43_IsVertexColoringTriangleFree () : Unit {
let testCases = (ExampleGraphs())[...2];
// There is only one edge coloring for a disconnected graph of 3 vertices
let coloringAndVerdicts0 = [([], true)];
// For the complete graph with 4 vertices:
let coloringAndVerdicts1 = [([0, 0, 1, 0, 1, 0], false),
([0, 0, 0, 1, 1, 1], false),
([0, 0, 1, 1, 0, 0], true)];
// For a graph with 5 vertices, 3 in a triangle and 2 separate: any coloring with the triangle of different colors
let coloringAndVerdicts2 = [([0, 0, 1, 0, 1], true),
([0, 0, 0, 1, 1], true),
([0, 1, 1, 1, 0], false)];
let fullTestCases = Zipped(testCases, [
coloringAndVerdicts0,
coloringAndVerdicts1,
coloringAndVerdicts2
]);
for (testCase, coloringAndVerdicts) in fullTestCases {
let (V, edges) = testCase;
for (coloring, expectedResult) in coloringAndVerdicts {
Fact(IsVertexColoringTriangleFree(V, edges, coloring) == expectedResult,
$"Coloring {coloring} judged {(not expectedResult) ? "" | " not"} triangle-free for graph V = {V}, edges = {edges}");
}
}
}
// Helper operation to validate oracles for things other than vertex coloring
operation VerifySingleOutputFunction(numInputs : Int, op : ((Qubit[], Qubit) => Unit is Adj+Ctl), predicate : (Int -> Bool)) : Unit {
for assignment in 0 .. 2^numInputs - 1 {
use (inputs, output) = (Qubit[numInputs], Qubit());
within {
ApplyXorInPlace(assignment, LittleEndian(inputs));
} apply {
op(inputs, output);
}
// Check that the result is expected
let actual = ResultAsBool(MResetZ(output));
let expected = predicate(assignment);
Fact(actual == expected,
$"Oracle evaluation result {actual} does not match expected {expected} for assignment {IntAsBoolArray(assignment, numInputs)}");
// Check that the inputs were not modified
Fact(MeasureInteger(LittleEndian(inputs)) == 0,
$"The input states were modified for assignment {assignment}");
}
}
function IsTriangleValid (input : Int) : Bool {
// the triangle is valid if it has at least two different bits (i.e., not all are the same)
return input > 0 and input < 7;
}
@Test("QuantumSimulator")
operation T44_ValidTriangleOracle () : Unit {
VerifySingleOutputFunction(3, ValidTriangleOracle, IsTriangleValid);
}
function ExampleGraphs_TriangleFreeColoring () : (Int, (Int, Int)[])[] {
return [
// trivial graph with no edges (no triangles)
(6, []),
// "circle" graph (no triangles)
(6, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)]),
// complete bipartite graph K_{1,5} (no triangles)
(6, [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]),
// complete bipartite graph K_{3,3} (no triangles)
(6, [(0, 1), (0, 3), (0, 5), (1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (4, 5)]),
// complete graph with 3 edges (1 triangle)
(3, [(0, 1), (1, 2), (2, 0)]),
// disconnected graph consisting of two triangles 0-1-2 and 3-4-5
(6, [(0, 1), (4, 3), (2, 1), (5, 4), (5, 0), (2, 0)]),
// square + diagonal (two triangles)
(4, [(1, 0), (3, 2), (0, 3), (2, 1), (3, 1)]),
// square + two diagonals (four triangles)
(4, [(1, 0), (3, 2), (0, 3), (2, 1), (3, 1), (0, 2)]),
// square + two diagonals + center (4 triangles)
(5, [(0, 2), (1, 2), (3, 2), (4, 2), (0, 1), (1, 3), (4, 0), (3, 4)]),
// pyramid of 4 triangles
(6, [(2, 1), (2, 3), (1, 3), (1, 0), (1, 5), (3, 5), (3, 4), (0, 5), (5, 4)])
];
}
function BoolAsInt (a : Bool) : Int {
return a ? 1 | 0;
}
function IsVertexColoringTriangleFree_Wrapper (V : Int, edges: (Int, Int)[], colors: Int) : Bool {
let colorBools = IntAsBoolArray(colors, Length(edges));
let colorBits = Mapped(BoolAsInt, colorBools);
return IsVertexColoringTriangleFree_Reference(V, edges, colorBits);
}
@Test("QuantumSimulator")
operation T45_TriangleFreeColoringOracle () : Unit {
for (V, edges) in ExampleGraphs_TriangleFreeColoring() {
Message($"Testing {(V, edges)}");
VerifySingleOutputFunction(
Length(edges),
TriangleFreeColoringOracle(V, edges, _, _),
IsVertexColoringTriangleFree_Wrapper(V, edges, _));
}
}
}