-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathllm.py
429 lines (379 loc) · 13.8 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import asyncio
import json
import aiohttp
from aiohttp import web
from server import PromptServer
from bizyair.common.env_var import BIZYAIR_SERVER_ADDRESS
from bizyair.image_utils import decode_data, encode_comfy_image, encode_data
from .utils import (
decode_and_deserialize,
get_api_key,
get_llm_response,
get_vlm_response,
send_post_request,
serialize_and_encode,
)
async def fetch_all_models(api_key):
url = "https://api.siliconflow.cn/v1/models"
headers = {"accept": "application/json", "authorization": f"Bearer {api_key}"}
params = {"type": "text", "sub_type": "chat"}
try:
async with aiohttp.ClientSession() as session:
async with session.get(
url, headers=headers, params=params, timeout=10
) as response:
if response.status == 200:
data = await response.json()
all_models = [model["id"] for model in data["data"]]
return all_models
else:
print(f"Error fetching models: HTTP Status {response.status}")
return []
except aiohttp.ClientError as e:
print(f"Error fetching models: {e}")
return []
except asyncio.exceptions.TimeoutError:
print("Request to fetch models timed out")
return []
@PromptServer.instance.routes.post("/bizyair/get_silicon_cloud_llm_models")
async def get_silicon_cloud_llm_models_endpoint(request):
data = await request.json()
api_key = data.get("api_key", get_api_key())
all_models = await fetch_all_models(api_key)
llm_models = [model for model in all_models if "vl" not in model.lower()]
llm_models.append("No LLM Enhancement")
return web.json_response(llm_models)
@PromptServer.instance.routes.post("/bizyair/get_silicon_cloud_vlm_models")
async def get_silicon_cloud_vlm_models_endpoint(request):
data = await request.json()
api_key = data.get("api_key", get_api_key())
all_models = await fetch_all_models(api_key)
vlm_models = [model for model in all_models if "vl" in model.lower()]
vlm_models.append("No VLM Enhancement")
return web.json_response(vlm_models)
class SiliconCloudLLMAPI:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
default_system_prompt = """你是一个 stable diffusion prompt 专家,为我生成适用于 Stable Diffusion 模型的prompt。 我给你相关的单词,你帮我扩写为适合 Stable Diffusion 文生图的 prompt。要求: 1. 英文输出 2. 除了 prompt 外,不要输出任何其它的信息 """
return {
"required": {
"model": ((), {}),
"system_prompt": (
"STRING",
{
"default": default_system_prompt,
"multiline": True,
"dynamicPrompts": True,
},
),
"user_prompt": (
"STRING",
{
"default": "小猫,梵高风格",
"multiline": True,
"dynamicPrompts": True,
},
),
"max_tokens": ("INT", {"default": 512, "min": 100, "max": 1e5}),
"temperature": (
"FLOAT",
{"default": 0.7, "min": 0.0, "max": 2.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "get_llm_model_response"
OUTPUT_NODE = False
CATEGORY = "☁️BizyAir/AI Assistants"
def get_llm_model_response(
self, model, system_prompt, user_prompt, max_tokens, temperature
):
if model == "No LLM Enhancement":
return {"ui": {"text": (user_prompt,)}, "result": (user_prompt,)}
response = get_llm_response(
model,
system_prompt,
user_prompt,
max_tokens,
temperature,
)
ret = json.loads(response)
text = ret["choices"][0]["message"]["content"]
return (text,) # if update ui: {"ui": {"text": (text,)}, "result": (text,)}
class SiliconCloudVLMAPI:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ((), {}),
"system_prompt": (
"STRING",
{
"default": "你是一个能分析图像的AI助手。请仔细观察图像,并根据用户的问题提供详细、准确的描述。",
"multiline": True,
},
),
"user_prompt": (
"STRING",
{
"default": "请描述这张图片的内容,并指出任何有趣或不寻常的细节。",
"multiline": True,
},
),
"images": ("IMAGE",),
"max_tokens": ("INT", {"default": 512, "min": 100, "max": 1e5}),
"temperature": (
"FLOAT",
{"default": 0.7, "min": 0.0, "max": 2.0, "step": 0.01},
),
"detail": (["auto", "low", "high"], {"default": "auto"}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "get_vlm_model_response"
OUTPUT_NODE = False
CATEGORY = "☁️BizyAir/AI Assistants"
def get_vlm_model_response(
self, model, system_prompt, user_prompt, images, max_tokens, temperature, detail
):
if model == "No VLM Enhancement":
return (user_prompt,)
# 使用 encode_comfy_image 函数编码图像批次
encoded_images_json = encode_comfy_image(
images, image_format="WEBP", lossless=True
)
encoded_images_dict = json.loads(encoded_images_json)
# 提取所有编码后的图像
base64_images = list(encoded_images_dict.values())
response = get_vlm_response(
model,
system_prompt,
user_prompt,
base64_images,
max_tokens,
temperature,
detail,
)
ret = json.loads(response)
text = ret["choices"][0]["message"]["content"]
return (text,)
class BizyAirJoyCaption:
# refer to: https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha
API_URL = f"{BIZYAIR_SERVER_ADDRESS}/supernode/joycaption"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"do_sample": (["enable", "disable"],),
"temperature": (
"FLOAT",
{
"default": 0.5,
"min": 0.0,
"max": 2.0,
"step": 0.01,
"round": 0.001,
"display": "number",
},
),
"max_tokens": (
"INT",
{
"default": 256,
"min": 16,
"max": 512,
"step": 16,
"display": "number",
},
),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "joycaption"
CATEGORY = "☁️BizyAir/AI Assistants"
def joycaption(self, image, do_sample, temperature, max_tokens):
API_KEY = get_api_key()
SIZE_LIMIT = 1536
# device = image.device
_, w, h, c = image.shape
assert (
w <= SIZE_LIMIT and h <= SIZE_LIMIT
), f"width and height must be less than {SIZE_LIMIT}x{SIZE_LIMIT}, but got {w} and {h}"
payload = {
"image": None,
"do_sample": do_sample == "enable",
"temperature": temperature,
"max_new_tokens": max_tokens,
}
auth = f"Bearer {API_KEY}"
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": auth,
}
input_image = encode_data(image, disable_image_marker=True)
payload["image"] = input_image
ret: str = send_post_request(self.API_URL, payload=payload, headers=headers)
ret = json.loads(ret)
try:
if "result" in ret:
ret = json.loads(ret["result"])
except Exception as e:
raise Exception(f"Unexpected response: {ret} {e=}")
if ret["status"] == "error":
raise Exception(ret["message"])
msg = ret["data"]
if msg["type"] not in (
"comfyair",
"bizyair",
):
raise Exception(f"Unexpected response type: {msg}")
caption = msg["data"]
return (caption,)
class BizyAirJoyCaption2:
def __init__(self):
pass
# refer to: https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha
API_URL = f"{BIZYAIR_SERVER_ADDRESS}/supernode/joycaption2"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"do_sample": ([True, False],),
"temperature": (
"FLOAT",
{
"default": 0.5,
"min": 0.0,
"max": 2.0,
"step": 0.01,
"round": 0.001,
"display": "number",
},
),
"max_tokens": (
"INT",
{
"default": 256,
"min": 16,
"max": 512,
"step": 16,
"display": "number",
},
),
"caption_type": (
[
"Descriptive",
"Descriptive (Informal)",
"Training Prompt",
"MidJourney",
"Booru tag list",
"Booru-like tag list",
"Art Critic",
"Product Listing",
"Social Media Post",
],
),
"caption_length": (
["any", "very short", "short", "medium-length", "long", "very long"]
+ [str(i) for i in range(20, 261, 10)],
),
"extra_options": (
"STRING",
{
"default": "If there is a person/character in the image you must refer to them as {name}.",
"tooltip": "Extra options for the model",
"multiline": True,
},
),
"name_input": (
"STRING",
{
"default": "Jack",
"tooltip": "Name input is only used if an Extra Option is selected that requires it.",
},
),
"custom_prompt": (
"STRING",
{
"default": "",
"multiline": True,
},
),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "joycaption2"
CATEGORY = "☁️BizyAir/AI Assistants"
def joycaption2(
self,
image,
do_sample,
temperature,
max_tokens,
caption_type,
caption_length,
extra_options,
name_input,
custom_prompt,
):
API_KEY = get_api_key()
SIZE_LIMIT = 1536
_, w, h, c = image.shape
assert (
w <= SIZE_LIMIT and h <= SIZE_LIMIT
), f"width and height must be less than {SIZE_LIMIT}x{SIZE_LIMIT}, but got {w} and {h}"
payload = {
"image": None,
"do_sample": do_sample == True,
"temperature": temperature,
"max_new_tokens": max_tokens,
"caption_type": caption_type,
"caption_length": caption_length,
"extra_options": [extra_options],
"name_input": name_input,
"custom_prompt": custom_prompt,
}
auth = f"Bearer {API_KEY}"
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": auth,
}
input_image = encode_data(image, disable_image_marker=True)
payload["image"] = input_image
ret: str = send_post_request(self.API_URL, payload=payload, headers=headers)
ret = json.loads(ret)
try:
if "result" in ret:
ret = json.loads(ret["result"])
except Exception as e:
raise Exception(f"Unexpected response: {ret} {e=}")
if ret["type"] == "error":
raise Exception(ret["message"])
msg = ret["data"]
if msg["type"] not in (
"comfyair",
"bizyair",
):
raise Exception(f"Unexpected response type: {msg}")
caption = msg["data"]
return (caption,)
NODE_CLASS_MAPPINGS = {
"BizyAirSiliconCloudLLMAPI": SiliconCloudLLMAPI,
"BizyAirSiliconCloudVLMAPI": SiliconCloudVLMAPI,
"BizyAirJoyCaption": BizyAirJoyCaption,
"BizyAirJoyCaption2": BizyAirJoyCaption2,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BizyAirSiliconCloudLLMAPI": "☁️BizyAir SiliconCloud LLM API",
"BizyAirSiliconCloudVLMAPI": "☁️BizyAir SiliconCloud VLM API",
"BizyAirJoyCaption": "☁️BizyAir Joy Caption",
"BizyAirJoyCaption2": "☁️BizyAir Joy Caption2",
}