-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinear_regression.py
48 lines (38 loc) · 1.38 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import math
sample_data = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
# defines the mean squared error
def mse(predictions, actual):
loss_sum_sqared = 0
for i in range(0, len(predictions)):
loss_sum_sqared += (predictions[i] - actual[i])**2
return loss_sum_sqared / len(predictions)
# y = w*x + b
# find values of w and b through gradient descent and update w,b after each iteration
w = 0.0 # weight
b = 10.0 # bias
n = 0.005 # learning coefficient
# keep iterating till convergence
t = 0
prevloss = 0
length = len(sample_data)
while True:
print("Iteration " + str(t))
# calculate prediction using equation y = wx + b
predictions = [(x, w*x + b) for (x,y) in sample_data]
# calculate the loss using mean squared error
loss = mse([x[1] for x in predictions], [x[1] for x in sample_data])
print("Loss in " + str(t) + " iteration: " + str(loss))
# check if previous loss and current loss have stopped changing - difference is less than some threshold
if abs(loss - prevloss) < 0.01:
print("Breaking! Convergence achieved")
break
# update values
b_gradient = -(2.0/length) * sum([(y - (w*x + b)) for (x,y) in sample_data])
w_gradient = -(2.0/length) * sum([x*(y - (w*x + b)) for (x,y) in sample_data])
w = w - n*w_gradient
b = b - n*b_gradient
print("Now w: " + str(w) + " and b: " + str(b))
# raw_input("Enter")
prevloss = loss
t += 1
print("Final w: " + str(w) + " and b: " + str(b))