-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathUT_SolidAngle.h
370 lines (319 loc) · 11.9 KB
/
UT_SolidAngle.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*
* Copyright (c) 2018 Side Effects Software Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* COMMENTS:
* Functions and structures for computing solid angles.
*/
#pragma once
#ifndef __HDK_UT_SolidAngle_h__
#define __HDK_UT_SolidAngle_h__
#include "UT_BVH.h"
#include "UT_FixedVector.h"
#include "SYS_Math.h"
#include <memory>
namespace HDK_Sample {
template<typename T>
using UT_Vector2T = UT_FixedVector<T,2>;
template<typename T>
using UT_Vector3T = UT_FixedVector<T,3>;
template <typename T>
SYS_FORCE_INLINE T cross(const UT_Vector2T<T> &v1, const UT_Vector2T<T> &v2)
{
return v1[0]*v2[1] - v1[1]*v2[0];
}
template <typename T>
SYS_FORCE_INLINE
UT_Vector3T<T> cross(const UT_Vector3T<T> &v1, const UT_Vector3T<T> &v2)
{
UT_Vector3T<T> result;
// compute the cross product:
result[0] = v1[1]*v2[2] - v1[2]*v2[1];
result[1] = v1[2]*v2[0] - v1[0]*v2[2];
result[2] = v1[0]*v2[1] - v1[1]*v2[0];
return result;
}
/// Returns the signed solid angle subtended by triangle abc
/// from query point.
///
/// WARNING: This uses the right-handed normal convention, whereas most of
/// Houdini uses the left-handed normal convention, so either
/// negate the output, or swap b and c if you want it to be
/// positive inside and negative outside.
template<typename T>
T UTsignedSolidAngleTri(
const UT_Vector3T<T> &a,
const UT_Vector3T<T> &b,
const UT_Vector3T<T> &c,
const UT_Vector3T<T> &query)
{
// Make a, b, and c relative to query
UT_Vector3T<T> qa = a-query;
UT_Vector3T<T> qb = b-query;
UT_Vector3T<T> qc = c-query;
const T alength = qa.length();
const T blength = qb.length();
const T clength = qc.length();
// If any triangle vertices are coincident with query,
// query is on the surface, which we treat as no solid angle.
if (alength == 0 || blength == 0 || clength == 0)
return T(0);
// Normalize the vectors
qa /= alength;
qb /= blength;
qc /= clength;
// The formula on Wikipedia has roughly dot(qa,cross(qb,qc)),
// but that's unstable when qa, qb, and qc are very close,
// (e.g. if the input triangle was very far away).
// This should be equivalent, but more stable.
const T numerator = dot(qa, cross(qb-qa, qc-qa));
// If numerator is 0, regardless of denominator, query is on the
// surface, which we treat as no solid angle.
if (numerator == 0)
return T(0);
const T denominator = T(1) + dot(qa,qb) + dot(qa,qc) + dot(qb,qc);
return T(2)*SYSatan2(numerator, denominator);
}
template<typename T>
T UTsignedSolidAngleQuad(
const UT_Vector3T<T> &a,
const UT_Vector3T<T> &b,
const UT_Vector3T<T> &c,
const UT_Vector3T<T> &d,
const UT_Vector3T<T> &query)
{
// Make a, b, c, and d relative to query
UT_Vector3T<T> v[4] = {
a-query,
b-query,
c-query,
d-query
};
const T lengths[4] = {
v[0].length(),
v[1].length(),
v[2].length(),
v[3].length()
};
// If any quad vertices are coincident with query,
// query is on the surface, which we treat as no solid angle.
// We could add the contribution from the non-planar part,
// but in the context of a mesh, we'd still miss some, like
// we do in the triangle case.
if (lengths[0] == T(0) || lengths[1] == T(0) || lengths[2] == T(0) || lengths[3] == T(0))
return T(0);
// Normalize the vectors
v[0] /= lengths[0];
v[1] /= lengths[1];
v[2] /= lengths[2];
v[3] /= lengths[3];
// Compute (unnormalized, but consistently-scaled) barycentric coordinates
// for the query point inside the tetrahedron of points.
// If 0 or 4 of the coordinates are positive, (or slightly negative), the
// query is (approximately) inside, so the choice of triangulation matters.
// Otherwise, the triangulation doesn't matter.
const UT_Vector3T<T> diag02 = v[2]-v[0];
const UT_Vector3T<T> diag13 = v[3]-v[1];
const UT_Vector3T<T> v01 = v[1]-v[0];
const UT_Vector3T<T> v23 = v[3]-v[2];
T bary[4];
bary[0] = dot(v[3],cross(v23,diag13));
bary[1] = -dot(v[2],cross(v23,diag02));
bary[2] = -dot(v[1],cross(v01,diag13));
bary[3] = dot(v[0],cross(v01,diag02));
const T dot01 = dot(v[0],v[1]);
const T dot12 = dot(v[1],v[2]);
const T dot23 = dot(v[2],v[3]);
const T dot30 = dot(v[3],v[0]);
T omega = T(0);
// Equation of a bilinear patch in barycentric coordinates of its
// tetrahedron is x0*x2 = x1*x3. Less is one side; greater is other.
if (bary[0]*bary[2] < bary[1]*bary[3])
{
// Split 0-2: triangles 0,1,2 and 0,2,3
const T numerator012 = bary[3];
const T numerator023 = bary[1];
const T dot02 = dot(v[0],v[2]);
// If numerator is 0, regardless of denominator, query is on the
// surface, which we treat as no solid angle.
if (numerator012 != T(0))
{
const T denominator012 = T(1) + dot01 + dot12 + dot02;
omega = SYSatan2(numerator012, denominator012);
}
if (numerator023 != T(0))
{
const T denominator023 = T(1) + dot02 + dot23 + dot30;
omega += SYSatan2(numerator023, denominator023);
}
}
else
{
// Split 1-3: triangles 0,1,3 and 1,2,3
const T numerator013 = -bary[2];
const T numerator123 = -bary[0];
const T dot13 = dot(v[1],v[3]);
// If numerator is 0, regardless of denominator, query is on the
// surface, which we treat as no solid angle.
if (numerator013 != T(0))
{
const T denominator013 = T(1) + dot01 + dot13 + dot30;
omega = SYSatan2(numerator013, denominator013);
}
if (numerator123 != T(0))
{
const T denominator123 = T(1) + dot12 + dot23 + dot13;
omega += SYSatan2(numerator123, denominator123);
}
}
return T(2)*omega;
}
/// Class for quickly approximating signed solid angle of a large mesh
/// from many query points. This is useful for computing the
/// generalized winding number at many points.
///
/// NOTE: This is currently only instantiated for <float,float>.
template<typename T,typename S>
class UT_SolidAngle
{
public:
/// This is outlined so that we don't need to include UT_BVHImpl.h
UT_SolidAngle();
/// This is outlined so that we don't need to include UT_BVHImpl.h
~UT_SolidAngle();
/// NOTE: This does not take ownership over triangle_points or positions,
/// but does keep pointers to them, so the caller must keep them in
/// scope for the lifetime of this structure.
UT_SolidAngle(
const int ntriangles,
const int *const triangle_points,
const int npoints,
const UT_Vector3T<S> *const positions,
const int order = 2)
: UT_SolidAngle()
{ init(ntriangles, triangle_points, npoints, positions, order); }
/// Initialize the tree and data.
/// NOTE: It is safe to call init on a UT_SolidAngle that has had init
/// called on it before, to re-initialize it.
void init(
const int ntriangles,
const int *const triangle_points,
const int npoints,
const UT_Vector3T<S> *const positions,
const int order = 2);
/// Frees myTree and myData, and clears the rest.
void clear();
/// Returns true if this is clear
bool isClear() const
{ return myNTriangles == 0; }
/// Returns an approximation of the signed solid angle of the mesh from the specified query_point
/// accuracy_scale is the value of (maxP/q) beyond which the approximation of the box will be used.
T computeSolidAngle(const UT_Vector3T<T> &query_point, const T accuracy_scale = T(2.0)) const;
private:
struct BoxData;
static constexpr uint BVH_N = 4;
UT_BVH<BVH_N> myTree;
int myNBoxes;
int myOrder;
std::unique_ptr<BoxData[]> myData;
int myNTriangles;
const int *myTrianglePoints;
int myNPoints;
const UT_Vector3T<S> *myPositions;
};
template<typename T>
T UTsignedAngleSegment(
const UT_Vector2T<T> &a,
const UT_Vector2T<T> &b,
const UT_Vector2T<T> &query)
{
// Make a and b relative to query
UT_Vector2T<T> qa = a-query;
UT_Vector2T<T> qb = b-query;
// If any segment vertices are coincident with query,
// query is on the segment, which we treat as no angle.
if (qa.isZero() || qb.isZero())
return T(0);
// numerator = |qa||qb|sin(theta)
const T numerator = cross(qa, qb);
// If numerator is 0, regardless of denominator, query is on the
// surface, which we treat as no solid angle.
if (numerator == 0)
return T(0);
// denominator = |qa||qb|cos(theta)
const T denominator = dot(qa,qb);
// numerator/denominator = tan(theta)
return SYSatan2(numerator, denominator);
}
/// Class for quickly approximating signed subtended angle of a large curve
/// from many query points. This is useful for computing the
/// generalized winding number at many points.
///
/// NOTE: This is currently only instantiated for <float,float>.
template<typename T,typename S>
class UT_SubtendedAngle
{
public:
/// This is outlined so that we don't need to include UT_BVHImpl.h
UT_SubtendedAngle();
/// This is outlined so that we don't need to include UT_BVHImpl.h
~UT_SubtendedAngle();
/// NOTE: This does not take ownership over segment_points or positions,
/// but does keep pointers to them, so the caller must keep them in
/// scope for the lifetime of this structure.
UT_SubtendedAngle(
const int nsegments,
const int *const segment_points,
const int npoints,
const UT_Vector2T<S> *const positions,
const int order = 2)
: UT_SubtendedAngle()
{ init(nsegments, segment_points, npoints, positions, order); }
/// Initialize the tree and data.
/// NOTE: It is safe to call init on a UT_SolidAngle that has had init
/// called on it before, to re-initialize it.
void init(
const int nsegments,
const int *const segment_points,
const int npoints,
const UT_Vector2T<S> *const positions,
const int order = 2);
/// Frees myTree and myData, and clears the rest.
void clear();
/// Returns true if this is clear
bool isClear() const
{ return myNSegments == 0; }
/// Returns an approximation of the signed solid angle of the mesh from the specified query_point
/// accuracy_scale is the value of (maxP/q) beyond which the approximation of the box will be used.
T computeAngle(const UT_Vector2T<T> &query_point, const T accuracy_scale = T(2.0)) const;
private:
struct BoxData;
static constexpr uint BVH_N = 4;
UT_BVH<BVH_N> myTree;
int myNBoxes;
int myOrder;
std::unique_ptr<BoxData[]> myData;
int myNSegments;
const int *mySegmentPoints;
int myNPoints;
const UT_Vector2T<S> *myPositions;
};
} // End HDK_Sample namespace
#endif