-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiot_inference.py
169 lines (134 loc) · 5.46 KB
/
iot_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference demo for YAMNet."""
from __future__ import division, print_function
import sys
import numpy as np
import resampy
import soundfile as sf
import tensorflow as tf
import boto3
import base64
import time
import params
import yamnet as yamnet_model
import csv
from tensorflow.keras.models import load_model
from tensorflow.keras import Model, layers
import features
from yamnet import _YAMNET_LAYER_DEFS
def _yamnet(features):
"""Define the core YAMNet mode in Keras."""
net = layers.Reshape(
(params.PATCH_FRAMES, params.PATCH_BANDS, 1),
input_shape=(params.PATCH_FRAMES, params.PATCH_BANDS))(features)
for (i, (layer_fun, kernel, stride, filters)) in enumerate(_YAMNET_LAYER_DEFS):
net = layer_fun('layer{}'.format(i + 1), kernel, stride, filters)(net)
net = layers.GlobalAveragePooling2D()(net)
logits = layers.Dense(units=params.NUM_CLASSES, use_bias=True)(net)
predictions = layers.Activation(
name=params.EXAMPLE_PREDICTIONS_LAYER_NAME,
activation=params.CLASSIFIER_ACTIVATION)(logits)
return predictions, net
def _yamnet_frames_model(feature_params):
"""Defines the YAMNet waveform-to-class-scores model.
Args:
feature_params: An object with parameter fields to control the feature
calculation.
Returns:
A model accepting (1, num_samples) waveform input and emitting a
(num_patches, num_classes) matrix of class scores per time frame as
well as a (num_spectrogram_frames, num_mel_bins) spectrogram feature
matrix.
"""
waveform = layers.Input(batch_shape=(1, None))
# Store the intermediate spectrogram features to use in visualization.
spectrogram = features.waveform_to_log_mel_spectrogram(
tf.squeeze(waveform, axis=0), feature_params)
patches = features.spectrogram_to_patches(spectrogram, feature_params)
predictions, net = _yamnet(patches)
frames_model = Model(name='yamnet_frames',
inputs=waveform, outputs=[predictions, spectrogram, net, patches])
return frames_model, net
def sendResultToIoT(dogscore,things,scores):
iotclient = boto3.client('iot-data')
message = "{ \"requests\":\"finish\",\"dogscore\":\""+str(dogscore)+"\",\"classtype\":{\"angrydog\":\""+str(scores[0])+"\",\"other\":\""+str(scores[1])+"\"}}"
try:
aitopic = things+'/ai/get'
response = iotclient.publish(
topic=aitopic,
qos=0,
payload=message
)
print("published to:",aitopic,message,"response:",response)
except:
print ("UnauthorizedException")
if dogscore < 0.8 :
return
s3 = boto3.resource('s3')
obj = s3.Object('voicerecognise','alarm.pcm')
alarm = obj.get()['Body'].read()
total_alarm_section = int(len(alarm)/1536)
alarm_section = total_alarm_section
while alarm_section:
print(alarm_section,',')
section_data = base64.b64encode(alarm[alarm_section*1536:(alarm_section+1)*1536]).decode("utf-8")
message = "{ \"requests\":\"alarm\",\"section\":\""+str(alarm_section)+"\",\"totalsection\":\""+str(total_alarm_section)+"\",\"data\":\""+ section_data + "\"}"
try:
aitopic = things+'/ai/get'
response = iotclient.publish(
topic=aitopic,
qos=0,
payload=message
)
except:
print ("UnauthorizedException")
alarm_section-=1
time.sleep(0.005)
def class_id(class_map_csv):
with open(class_map_csv) as csv_file:
reader = csv.reader(csv_file)
next(reader) # Skip header
return np.array([int(index) for (index, _, _) in reader])
def main(argv):
assert argv
graph = tf.Graph()
yamnet,_ = _yamnet_frames_model(params)
yamnet.load_weights('yamnet.h5')
angrydog_model = load_model('angrydog.h5')
for soundkey in argv:
# Download S3 document
s3 = boto3.client('s3')
s3.download_file('voicerecognise',soundkey,"sample.wav")
# Decode the WAV file.
wav_data, sr = sf.read("sample.wav", dtype=np.int16)
assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype
waveform = wav_data / 32768.0 # Convert to [-1.0, +1.0]
# Convert to mono and the sample rate expected by YAMNet.
if len(waveform.shape) > 1:
waveform = np.mean(waveform, axis=1)
if sr != params.SAMPLE_RATE:
waveform = resampy.resample(waveform, sr, params.SAMPLE_RATE)
_, _,dense,_ = yamnet.predict(np.reshape(waveform, [1, -1]), steps=1)
scores = []
for patch in dense:
score = angrydog_model.predict( np.expand_dims(patch,0)).squeeze()
scores.append(score)
scores = np.mean(scores,axis=0)
splited = soundkey.split('_')
things=splited[1]
sendResultToIoT(scores[0],things,scores)
if __name__ == '__main__':
main(sys.argv[1:])