forked from covid19-model/simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilitysim.py
860 lines (721 loc) · 35.2 KB
/
mobilitysim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
from collections import namedtuple, defaultdict
import itertools
import random as rd
import pandas as pd
import numpy as np
import numba
import pickle
import json
from interlap import InterLap
from lib.calibrationSettings import calibration_mob_paths
TO_HOURS = 24.0
# Tuple representing a vist of an individual at a site
# Note: first two elements must be('t_from', 't_to_shifted') to match contacts using `interlap`
Visit = namedtuple('Visit', (
't_from', # Time of arrival at site
't_to_shifted', # Time influence of visit ends (i.e. time of departure, shifted by `delta`)
't_to', # Time of departure from site
'indiv', # Id of individual
'site', # Id of site
'duration', # Duration of visit (i.e. `t_to` - `t_from`)
'id' # unique id of visit, used to identify specific visits of `indiv`
))
# Tupe representing a contact from a individual i to another individual j
# where individual i is at risk due to j
Contact = namedtuple('Contact', (
't_from', # Time of beginning of contact
't_to', # Time of end of contact including `delta`
'indiv_i', # Id of individual 'from' contact (uses interval (`t_from`, `t_to`) for matching)
'indiv_j', # Id of individual 'to' contact (may have already left, uses interval (`t_from`, `t_to_shifted`) for matching)
'site', # Id of site
'duration', # Duration of contact (i.e. when i was at risk due to j)
'id_tup', # tuple of `id`s of visits of `indiv_i` and `indiv_j`
't_to_direct', # Time of end of contact (excluding delta; hence, it is possible for `t_to_direct` < `t_from`)
))
# Tuple representing an interval for back-operability with previous version
# using pandas.Interval objects
Interval = namedtuple('Interval', ('left', 'right'))
@numba.njit
def _simulate_individual_synthetic_trace(indiv, num_sites, max_time, home_loc, site_loc,
site_type, mob_rate_per_type, dur_mean_per_type, delta):
"""Simulate a mobility trace for one synthetic individual on a 2D grid (jit for speed)"""
# Holds tuples of (time_start, time_end, indiv, site, duration)
data = list()
# Set rates and probs
tot_mob_rate = np.sum(mob_rate_per_type) # Total mobility rate
site_type_prob = mob_rate_per_type / tot_mob_rate # Site type probability
# time
t = rd.expovariate(tot_mob_rate)
# Site proximity to individual's home
site_dist = np.sum((home_loc[indiv] - site_loc)**2,axis=1)
site_prox = 1/(1+site_dist)
id = 0
while t < max_time:
# Choose a site type
k = np.searchsorted(np.cumsum(site_type_prob), np.random.random(), side="right")
s_args = np.where(site_type == k)[0]
if len(s_args) == 0: # If there is no site of this type, resample
# FIXME: If input site types are messed up (prob 1 for missing type)
# then we end up in an infinit loop...
continue
# Choose site: Proportional to distance among chosen type
site_prob = site_prox[s_args] / site_prox[s_args].sum()
s_idx = np.random.multinomial(1, pvals=site_prob).argmax()
site = s_args[s_idx]
# Duration: Exponential
dur = rd.expovariate(1/dur_mean_per_type[k])
if t + dur > max_time:
break
# Add visit namedtuple to list
data.append(Visit(
id=id,
t_from=t,
t_to_shifted=t + dur + delta,
t_to=t + dur,
indiv=indiv,
site=site,
duration=dur))
# Shift time to after visit influence (i.e. duration + delta)
t += dur + delta
# Shift time to next start of next visit
t += rd.expovariate(tot_mob_rate)
# Increment id
id += 1
return data
@numba.njit
def _simulate_individual_real_trace(indiv, max_time, site_type, mob_rate_per_type, dur_mean_per_type,
variety_per_type, delta, site_dist):
"""Simulate a mobility trace for one real individual in a given town (jit for speed)"""
# Holds tuples of (time_start, time_end, indiv, site, duration)
data = list()
# Set rates and probs
tot_mob_rate = np.sum(mob_rate_per_type) # Total mobility rate
site_type_prob = mob_rate_per_type / tot_mob_rate # Site type probability
# time
t = rd.expovariate(tot_mob_rate)
# Site proximity to individual's home
site_dist = site_dist**2
site_prox = 1/(1+site_dist)
# Choose usual sites: Inversely proportional to squared distance among chosen type
usual_sites=[]
for k in range(len(mob_rate_per_type)):
usual_sites_k=[]
# All sites of type k
s_args = np.where(site_type == k)[0]
# Number of discrete sites to choose from type k
variety_k = variety_per_type[k]
# Probability of sites of type k
site_prob = site_prox[s_args] / site_prox[s_args].sum()
done = 0
while (done < variety_k and len(s_args) > done):
# s_idx = np.random.choice(site_prob.shape[0], p=site_prob)
# s_idx = np.random.multinomial(1, pvals=site_prob).argmax()
# numba-stable/compatible way of np.random.choice (otherwise crashes)
s_idx = np.searchsorted(np.cumsum(site_prob), np.random.random(), side="right")
site = s_args[s_idx]
# Don't pick the same site twice
if site not in usual_sites_k:
usual_sites_k.append(site)
done+=1
usual_sites.append(usual_sites_k)
id = 0
while t < max_time:
# k = np.random.multinomial(1, pvals=site_type_prob).argmax()
# k = np.random.choice(site_type_prob.shape[0], p=site_type_prob)
# Choose a site type
# numba-stable/compatible way of np.random.choice (otherwise crashes)
k = np.searchsorted(np.cumsum(site_type_prob), np.random.random(), side="right")
# Choose a site among the usuals of type k
site = np.random.choice(np.array(usual_sites[k]))
# Duration: Exponential
dur = rd.expovariate(1/dur_mean_per_type[k])
if t + dur > max_time:
break
# Add visit namedtuple to list
data.append(Visit(
id=id,
t_from=t,
t_to_shifted=t + dur + delta,
t_to=t + dur,
indiv=indiv,
site=site,
duration=dur))
# Shift time to after visit influence (i.e. duration + delta)
t += dur + delta
# Shift time to next start of next visit
t += rd.expovariate(tot_mob_rate)
# Increment id
id += 1
return data
@numba.njit
def _simulate_synthetic_mobility_traces(*, num_people, num_sites, max_time, home_loc, site_loc,
site_type, people_age, mob_rate_per_age_per_type, dur_mean_per_type,
delta, seed):
rd.seed(seed)
np.random.seed(seed-1)
data, visit_counts = list(), list()
for i in range(num_people):
# use mobility rates of specific age group
mob_rate_per_type = mob_rate_per_age_per_type[people_age[i]]
data_i = _simulate_individual_synthetic_trace(
indiv=i,
num_sites=num_sites,
max_time=max_time,
home_loc=home_loc,
site_loc=site_loc,
site_type=site_type,
mob_rate_per_type=mob_rate_per_type,
dur_mean_per_type=dur_mean_per_type,
delta=delta)
data.extend(data_i)
visit_counts.append(len(data_i))
return data, visit_counts
@numba.njit
def _simulate_real_mobility_traces(*, num_people, max_time, site_type, people_age, mob_rate_per_age_per_type,
dur_mean_per_type, home_tile, tile_site_dist, variety_per_type, delta, seed):
rd.seed(seed)
np.random.seed(seed-1)
data, visit_counts = list(), list()
for i in range(num_people):
# use mobility rates of specific age group
mob_rate_per_type = mob_rate_per_age_per_type[people_age[i]]
# use site distances from specific tiles
site_dist = tile_site_dist[home_tile[i]]
data_i = _simulate_individual_real_trace(
indiv=i,
max_time=max_time,
site_type=site_type,
mob_rate_per_type=mob_rate_per_type,
dur_mean_per_type=dur_mean_per_type,
delta=delta,
variety_per_type=variety_per_type,
site_dist=site_dist)
data.extend(data_i)
visit_counts.append(len(data_i))
return data, visit_counts
def compute_mean_invariant_beta_multipliers(beta_multipliers, country, area, max_time, full_scale=True,
weighting='integrated_contact_time', mode='rescale_all'):
# Load mob settings
mob_settings_file = calibration_mob_paths[country][area][1 if full_scale else 0]
with open(mob_settings_file, 'rb') as fp:
mob_settings = pickle.load(fp)
mob = MobilitySimulator(**mob_settings)
mob.simulate(max_time=max_time)
mean_invariant_multipliers = mob.compute_mean_invariant_beta_multiplier(beta_multiplier=beta_multipliers,
weighting=weighting,
mode=mode)
return mean_invariant_multipliers
class MobilitySimulator:
"""Simulate a random history of contacts between individuals as follows:
- Locations of individuals' homes and locations of sites are sampled
uniformly at random location on a 2D square grid or given as input.
- Each individual visits a site with rate `1/mob_mean` and remains
there for `1/duration_mean` (+ a `fixed` delta delay) where mob_mean and
duration_mean depend on the type of site and the age group of the individual.
- Individuals choose a site inversely proportional to its distance from their home.
- Contacts are directional. We define contact from `i` to `j` when:
- either individuals `i` and `j` were at the same site at the same time,
- or individual `i` arrived within a `delta` time after `j` left
The times are reported in the same units, the parameters are given.
Example of usage to simulate a history for 10 peoples accross 5 sites for
an observation window of 24 time units:
```
sim = mobilitysim.MobilitySimulator(num_people=10, num_sites=5)
contacts = sim.simulate(max_time=24)
```
To find if an individual `i` is at site `k` at time `t`, do:
```
sim.is_individual_at_site(indiv=i, site=k, t=t)
```
To find if an individual `i` is contact with individual `j` at site `k`
at time `t`, do:
```
sim.is_in_contact(indiv_i=i, indiv_j=j, site=k, t=t)
```
To find if an individual `i` will ever be in contact with individual `j` at
site `k` at any time larger or equal to `t`, do:
```
sim.will_be_in_contact(indiv_i=i, indiv_j=j, site=k, t=t)
```
To find the next contact time with individual `i` with individual `j` at
site `k`after time `t`, do:
```
sim.next_contact_time(indiv_i=i, indiv_j=j, site=k, t=t)
```
"""
def __init__(self, delta, home_loc=None, people_age=None, site_loc=None, site_type=None,
site_dict=None, daily_tests_unscaled=None, region_population=None,
mob_rate_per_age_per_type=None, dur_mean_per_type=None, home_tile=None,
tile_site_dist=None, variety_per_type=None, people_household=None, downsample=None,
num_people=None, num_people_unscaled=None, num_sites=None, mob_rate_per_type=None,
dur_mean=None, num_age_groups=None, seed=None, beacon_config=None, verbose=False):
"""
delta : float
Time delta to extend contacts
home_loc : list of [float,float]
Home coordinates of each individual
people_age : list of int
Age group of each individual
people_household : list of int
Household of each individual
households : dict with key=household, value=individual
Individuals on each household
site_loc : list of [float,float]
Site coordinates
site_type : list of int
Type of each site
site_dict : dict of str
Translates numerical site types into words
daily_tests_unscaled : int
Daily testing capacity per 100k people
region_population : int
Number of people living in entire area/region
downsample : int
Downsampling factor chosen for real town population and sites
mob_rate_per_age_per_type: list of list of float
Mean number of visits per time unit.
Rows correspond to age groups, columns correspond to site types.
dur_mean_per_type : float
Mean duration of a visit per site type
home_tile : list of int
Tile indicator for each home
tile_site_dist: 2D int array
Pairwise distances between tile centers and sites.
Rows correspond to tiles, columns correspond to sites.
variety_per_type : list of int
Number of discrete sites per type
num_people : int
Number of people to simulate
num_people_unscaled : int
Real number of people in town (unscaled)
num_sites : int
Number of sites to simulate
mob_rate_per_type : list of floats
Mean rate for each type of site, i.e. number of visits per time unit
dur_mean : float
Mean duration of a visit
num_age_groups : int
Number of age groups
beacon_config: dict
Beacons implementation configuration
verbose : bool (optional, default: False)
Verbosity level
"""
# Set random seed for reproducibility
seed = seed or rd.randint(0, 2**32 - 1)
rd.seed(seed)
np.random.seed(seed-1)
synthetic = (num_people is not None and num_sites is not None and mob_rate_per_type is not None and
dur_mean is not None and num_age_groups is not None)
real = (home_loc is not None and people_age is not None and site_loc is not None and site_type is not None and
daily_tests_unscaled is not None and num_people_unscaled is not None and region_population is not None and
mob_rate_per_age_per_type is not None and dur_mean_per_type is not None and home_tile is not None and
tile_site_dist is not None and variety_per_type is not None and downsample is not None)
assert (synthetic != real), 'Unable to decide on real or synthetic mobility generation based on given arguments'
if synthetic:
self.mode = 'synthetic'
self.region_population = None
self.downsample = None
self.num_people = num_people
self.num_people_unscaled = None
# Random geographical assignment of people's home on 2D grid
self.home_loc = np.random.uniform(0.0, 1.0, size=(self.num_people, 2))
# Age-group of individuals
self.people_age = np.random.randint(low=0, high=num_age_groups,
size=self.num_people, dtype=int)
self.people_household = None
self.households = None
self.daily_tests_unscaled =None
self.num_sites = num_sites
# Random geographical assignment of sites on 2D grid
self.site_loc = np.random.uniform(0.0, 1.0, size=(self.num_sites, 2))
# common mobility rate for all age groups
self.mob_rate_per_age_per_type = np.tile(mob_rate_per_type,(num_age_groups,1))
self.num_age_groups = num_age_groups
self.num_site_types = len(mob_rate_per_type)
# common duration for all types
self.dur_mean_per_type = np.array(self.num_site_types*[dur_mean])
# Random type for each site
site_type_prob = np.ones(self.num_site_types)/self.num_site_types
self.site_type = np.random.multinomial(
n=1, pvals=site_type_prob, size=self.num_sites).argmax(axis=1)
self.variety_per_type = None
self.home_tile=None
self.tile_site_dist=None
elif real:
self.mode = 'real'
self.downsample = downsample
self.region_population = region_population
self.num_people_unscaled = num_people_unscaled
self.num_people = len(home_loc)
self.home_loc = np.array(home_loc)
self.people_age = np.array(people_age)
if people_household is not None:
self.people_household = np.array(people_household)
# create dict of households, to retreive household members in O(1) during household infections
self.households = {}
for i in range(self.num_people):
if self.people_household[i] in self.households:
self.households[people_household[i]].append(i)
else:
self.households[people_household[i]] = [i]
else:
self.people_household = None
self.households = {}
self.num_sites = len(site_loc)
self.site_loc = np.array(site_loc)
self.daily_tests_unscaled = daily_tests_unscaled
self.mob_rate_per_age_per_type = np.array(mob_rate_per_age_per_type)
self.num_age_groups = self.mob_rate_per_age_per_type.shape[0]
self.num_site_types = self.mob_rate_per_age_per_type.shape[1]
self.dur_mean_per_type = np.array(dur_mean_per_type)
self.site_type = np.array(site_type)
self.variety_per_type=np.array(variety_per_type)
self.home_tile=np.array(home_tile)
self.tile_site_dist=np.array(tile_site_dist)
else:
raise ValueError('Provide more information for the generation of mobility data.')
# Only relevant if an old settings file is being used, should be removed in the future
if site_dict is None:
self.site_dict = {0: 'education', 1: 'social', 2: 'bus_stop', 3: 'office', 4: 'supermarket'}
else:
self.site_dict = site_dict
self.delta = delta
self.verbose = verbose
self.beacon_config = beacon_config
self.site_has_beacon = self.place_beacons(
beacon_config=beacon_config, rollouts=10, max_time=28 * TO_HOURS)
'''Beacon information computed at test time'''
def compute_site_priority(self, rollouts, max_time, beta_multipliers=None):
"""Computes site priority by integrated visit time scaled with site specific beta."""
if beta_multipliers:
weights = beta_multipliers
else:
weights = {key: 1.0 for key in self.site_dict.values()}
time_at_site = np.zeros(self.num_sites)
for _ in range(rollouts):
all_mob_traces = self._simulate_mobility(max_time=max_time)
for v in all_mob_traces:
site_type = self.site_dict[self.site_type[v.site]]
time_at_site[v.site] += v.duration * weights[site_type]
temp = time_at_site.argsort()
site_priority = np.empty_like(temp)
site_priority[temp] = np.arange(len(time_at_site))
return site_priority
def place_beacons(self, *, beacon_config, rollouts, max_time):
'''
Computes whether or not a given site has a beacon installed
'''
if beacon_config is None:
return np.zeros(self.num_sites, dtype=bool)
elif beacon_config['mode'] == 'all':
return np.ones(self.num_sites, dtype=bool)
elif beacon_config['mode'] == 'random':
# extract mode specific information
proportion_with_beacon = beacon_config['proportion_with_beacon']
# compute beacon locations
perm = np.random.permutation(self.num_sites)
site_has_beacon = np.zeros(self.num_sites, dtype=bool)
site_has_beacon[perm[:int(proportion_with_beacon * self.num_sites)]] = True
return site_has_beacon
elif beacon_config['mode'] == 'visit_freq':
# extract mode specific information
proportion_with_beacon = beacon_config['proportion_with_beacon']
try:
beta_multipliers = beacon_config['beta_multipliers']
except KeyError:
beta_multipliers = None
# compute beacon locations
site_has_beacon = np.zeros(self.num_sites, dtype=bool)
site_priority = self.compute_site_priority(rollouts, max_time, beta_multipliers=beta_multipliers)
for k in range(len(site_has_beacon)):
if site_priority[k] > max(site_priority) * (1 - proportion_with_beacon):
site_has_beacon[k] = True
return site_has_beacon
else:
raise ValueError('Invalid `beacon_config` mode.')
'''Methods to calculate beta multiplier scaling to keep course of epidemic invariant in presence of beta dispersion'''
def compute_integrated_visit_time_proportion_per_site_type(self, rollouts, max_time):
time_at_site_type = np.zeros(self.num_site_types)
for _ in range(rollouts):
all_mob_traces = self._simulate_mobility(max_time=max_time)
for v in all_mob_traces:
time_at_site_type[self.site_type[v.site]] += v.duration
return time_at_site_type / np.sum(time_at_site_type)
def compute_integrated_contact_time_proportion_per_site_type(self, average_n_people, max_time):
contact_time_at_site_type = np.zeros(self.num_site_types)
self.simulate(max_time=max_time)
random_people = np.random.uniform(0, self.num_people, average_n_people).astype(np.int)
for person in random_people:
contacts = self.find_contacts_of_indiv(person, tmin=0, tmax=max_time)
for contact in contacts:
contact_time_at_site_type[self.site_type[contact.site]] += contact.duration
return contact_time_at_site_type / np.sum(contact_time_at_site_type)
def compute_mean_invariant_beta_multiplier(self, beta_multiplier, weighting, mode):
"""Computes normalized beta multipliers from `beta_multiplier` such that the weighted average over the
betas at all sites remains invariant. Depending on the quantity that is supposed to be kept invariant,
the weights are calculated in different ways."""
n_sites_per_type = np.asarray([(np.array(self.site_type) == i).sum() for i in range(self.num_site_types)])
beta_multiplier_array = np.asarray(list(beta_multiplier.values()))
if weighting == 'sites_per_type':
numerator = n_sites_per_type
denominator = n_sites_per_type * beta_multiplier_array
elif weighting == 'integrated_visit_time':
integrated_visit_time = self.compute_integrated_visit_time_proportion_per_site_type(
max_time=28 * TO_HOURS, rollouts=1)
numerator = integrated_visit_time
denominator = integrated_visit_time * beta_multiplier_array
elif weighting == 'integrated_contact_time':
integrated_contact_time = self.compute_integrated_contact_time_proportion_per_site_type(
max_time=28 * TO_HOURS, average_n_people=int(self.num_people/10))
numerator = integrated_contact_time
denominator = integrated_contact_time * beta_multiplier_array
else:
numerator, denominator = None, None
NotImplementedError('Invalid beta weighting method specified')
if mode == 'rescale_all':
# [beta, x*beta, 1/x * beta, beta, beta] -> scaling * np.asarray([beta, x*beta, 1/x * beta, beta, beta])
scaling = np.sum(numerator) / np.sum(denominator)
beta_multiplier_array *= scaling
elif mode == 'rescale_scaled':
# [beta, x*beta, 1/x * beta, beta, beta] -> [beta, scaling * x*beta, scaling * 1/x * beta, beta, beta]
is_sitetype_scaled = np.where(beta_multiplier_array != 1.0)
scaling = np.sum(numerator[is_sitetype_scaled]) / np.sum(denominator[is_sitetype_scaled])
beta_multiplier_array[is_sitetype_scaled] *= scaling
for k, key in enumerate(beta_multiplier.keys()):
beta_multiplier[key] = beta_multiplier_array[k]
return beta_multiplier
'''Class methods'''
@staticmethod
def from_pickle(path):
"""
Load object from pickle file located at `path`
Parameters
----------
path : str
Path to input file
Return
------
sim : MobilitySimulator
The loaded object
"""
with open(path, 'rb') as fp:
obj = pickle.load(fp)
return obj
def to_pickle(self, path):
"""
Save object to pickle file located at `path`
Parameters
----------
path : str
Path to output file
"""
with open(path, 'wb') as fp:
pickle.dump(self, fp)
def _simulate_mobility(self, max_time, seed=None):
"""
Simulate mobility of all people for `max_time` time units
Parameters
----------
max_time : float
Number time to simulate
seed : int
Random seed for reproducibility
Return
------
mob_traces : list of `Visit` namedtuples
List of simulated visits of individuals to sites
home_loc : numpy.ndarray
Locations of homes of individuals
site_loc : numpy.ndarray
Locations of sites
"""
# Set random seed for reproducibility
seed = seed or rd.randint(0, 2**32 - 1)
rd.seed(seed)
np.random.seed(seed-1)
if self.mode == 'synthetic':
all_mob_traces, self.visit_counts = _simulate_synthetic_mobility_traces(
num_people=self.num_people,
num_sites=self.num_sites,
max_time=max_time,
home_loc=self.home_loc,
site_loc=self.site_loc,
site_type=self.site_type,
people_age=self.people_age,
mob_rate_per_age_per_type=self.mob_rate_per_age_per_type,
dur_mean_per_type=self.dur_mean_per_type,
delta=self.delta,
seed=rd.randint(0, 2**32 - 1)
)
elif self.mode == 'real':
all_mob_traces, self.visit_counts = _simulate_real_mobility_traces(
num_people=self.num_people,
max_time=max_time,
site_type=self.site_type,
people_age=self.people_age,
mob_rate_per_age_per_type=self.mob_rate_per_age_per_type,
dur_mean_per_type=self.dur_mean_per_type,
delta=self.delta,
home_tile=self.home_tile,
variety_per_type=self.variety_per_type,
tile_site_dist=self.tile_site_dist,
seed=rd.randint(0, 2**32 - 1)
)
return all_mob_traces
def _find_all_contacts(self):
"""
Finds contacts in a given list `mob_traces` of `Visit`s
and stores them in a dictionary of dictionaries of InterLap objects,
"""
# dict of dict of list of contacts:
# i.e. contacts[i][j][k] = "k-th contact from i to j"
contacts = {i: defaultdict(InterLap) for i in range(self.num_people)}
for j in range(self.num_people):
# Get all contacts of indiv j
contacts_j = self.find_contacts_of_indiv(indiv=j, tmin=0, tmax=np.inf)
# Sort contacts of indiv j by contact person
for c in contacts_j:
contacts[c.indiv_i, j].update([c])
return contacts
def find_contacts_of_indiv(self, indiv, tmin, tmax, tracing=False, p_reveal_visit=1.0):
"""
Finds all delta-contacts of person 'indiv' with any other individual after time 'tmin'
and returns them as InterLap object.
In the simulator, this function is called for `indiv` as infector.
"""
if tracing is True and self.beacon_config is None:
# If function is used for contact tracing and there are no beacons, can only trace direct contacts
extended_time_window = 0
else:
# If used for infection simulation or used for tracing with beacons, capture also indirect contacts
extended_time_window = self.delta
contacts = InterLap()
# iterate over all visits of `indiv` intersecting with the interval [tmin, tmax]
infector_traces = self.mob_traces_by_indiv[indiv].find((tmin, tmax if (tmax is not None) else np.inf))
for inf_visit in infector_traces:
# coin flip of whether infector `indiv` reveals their visit
if tracing is True and np.random.uniform(low=0.0, high=1.0) > p_reveal_visit:
continue
# find all contacts of `indiv` by querying visits of
# other individuals during visit time of `indiv` at the same site
# (including delta-contacts; if beacon_cache=0, delta-contacts get filtered out below)
inf_visit_time = (inf_visit.t_from, inf_visit.t_to_shifted)
concurrent_site_traces = self.mob_traces_by_site[inf_visit.site].find(inf_visit_time)
for visit in concurrent_site_traces:
# ignore visits of `indiv` since it is not a contact
if visit.indiv == inf_visit.indiv:
continue
# ignore if begin of visit is after tmax
# this can happen if inf_visit starts just before tmax but continues way beyond tmax
if visit.t_from > tmax:
continue
# Compute contact time
c_t_from = max(visit.t_from, inf_visit.t_from)
c_t_to = min(visit.t_to, inf_visit.t_to + extended_time_window)
c_t_to_direct = min(visit.t_to, inf_visit.t_to) # only direct
if c_t_to > c_t_from and c_t_to > tmin:
c = Contact(t_from=c_t_from,
t_to=c_t_to,
indiv_i=visit.indiv,
indiv_j=inf_visit.indiv,
id_tup=(visit.id, inf_visit.id),
site=inf_visit.site,
duration=c_t_to - c_t_from,
t_to_direct=c_t_to_direct)
contacts.update([c])
return contacts
def _group_mob_traces_by_indiv(self, mob_traces):
"""Group `mob_traces` by individual for faster queries.
Returns a dict of dict of Interlap of the form:
mob_traces_dict[i] = "Interlap of visits of indiv i"
"""
mob_traces_dict = {i: InterLap() for i in range(self.num_people)}
for v in mob_traces:
mob_traces_dict[v.indiv].update([v])
return mob_traces_dict
def _group_mob_traces_by_site(self, mob_traces):
"""Group `mob_traces` by site for faster queries.
Returns a dict of dict of Interlap of the form:
mob_traces_dict[k] = "Interlap of visits at site k"
"""
mob_traces_dict = {k: InterLap() for k in range(self.num_sites)}
for v in mob_traces:
mob_traces_dict[v.site].update([v])
return mob_traces_dict
def simulate(self, max_time, seed=None):
"""
Simulate contacts between individuals in time window [0, max_time].
Parameters
----------
max_time : float
Maximum time to simulate
seed : int
Random seed for mobility simulation
Returns
-------
contacts : list of list of tuples
A list of namedtuples containing the list of all contacts as
namedtuples ('time_start', 'indiv_j', 'duration'), where:
- `time_start` is the time the contact started
- 'indiv_j' is the id of the individual the contact was with
- 'duration' is the duration of the contact
"""
self.max_time = max_time
# Simulate mobility of each individuals to each sites
if self.verbose:
print(f'Simulate mobility for {max_time:.2f} time units... ',
end='', flush=True)
# simulate mobility traces
all_mob_traces = self._simulate_mobility(max_time, seed)
self.mob_traces_by_indiv = self._group_mob_traces_by_indiv(all_mob_traces)
self.mob_traces_by_site = self._group_mob_traces_by_site(all_mob_traces)
# Initialize empty contact array
self.contacts = {i: defaultdict(InterLap) for i in range(self.num_people)}
def list_intervals_in_window_individual_at_site(self, *, indiv, site, t0, t1):
"""Return a generator of Intervals of all visits of `indiv` is at site
`site` that overlap with [t0, t1]
The call
self.mob_traces_by_indiv[indiv].find((t0, t1))
matches all visits on visit window [`t_from`, `t_to_shifted`].
Since we only want to return real in-person visits,
we need to filter out matches such that `t_to` < `t0` and were only happening
in the sense of "environemental contamination"
i.e. only matched on (`t_to`, `t_to_shifted`]
"""
for visit in self.mob_traces_by_indiv[indiv].find((t0, t1)):
if visit.t_to >= t0 and visit.site == site:
yield Interval(visit.t_from, visit.t_to)
def is_in_contact(self, *, indiv_i, indiv_j, t, site=None):
"""Indicate if individual `indiv_i` is within `delta` time (i.e. at most `delta` later than `indiv_j`)
to make contact with `indiv_j` at time `t` in site `site`, and return contact if possible
In this query, `indiv_j` is usually an infector.
"""
try:
# Find contact matching time and check site
contact = next(self.contacts[indiv_i][indiv_j].find((t, t)))
return (site is None) or (contact.site == site), contact
except StopIteration: # No such contact, call to `next` failed
return False, None
def will_be_in_contact(self, *, indiv_i, indiv_j, t, site=None):
"""Indicate if individuals `indiv_i` will ever make contact with
`indiv_j` in site `site` at a time greater or equal to `t`
"""
contacts_ij = self.contacts[indiv_i][indiv_j]
# Search future contacts
for c in contacts_ij.find((t, np.inf)):
# Check site
if (site is None) or (c.site == site):
return True
return False
def next_contact(self, *, indiv_i, indiv_j, t=np.inf, site=None):
"""Returns the next `delta`- contact between
`indiv_i` with `indiv_j` in site `site` at a time greater or equal to `t`
"""
contacts_ij = self.contacts[indiv_i][indiv_j]
# Search future contacts
for c in contacts_ij.find((t, np.inf)):
# Check site
if (site is None) or (c.site == site):
return c
return None # No contact in the future