-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils.py
302 lines (245 loc) · 9.43 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import tensorflow as tf
import numpy as np
from sklearn.decomposition import TruncatedSVD
def combine_first_two_axes(tensor):
shape = tensor.shape
return tf.reshape(tensor, (shape[0] * shape[1], *shape[2:]))
def average_gradients(tower_grads, losses):
average_grads = list()
for grads, loss in zip(tower_grads, losses):
grad = tf.math.reduce_mean(grads, axis=0)
average_grads.append(grad)
return average_grads
def convert_grayscale_images_to_rgb(instances):
"""Gets a list of full path to images and replaces the ones which are grayscale with the same image but in RGB
format."""
counter = 0
fixed_instances = list()
for instance in instances:
image = tf.image.decode_jpeg(tf.io.read_file(instance))
if image.shape[2] != 3:
print(f'Overwriting 2d instance with 3d data: {instance}')
fixed_instances.append(instance)
image = tf.squeeze(image, axis=2)
image = tf.stack((image, image, image), axis=2)
image_data = tf.image.encode_jpeg(image)
tf.io.write_file(instance, image_data)
counter += 1
return counter, fixed_instances
def keep_keys_with_greater_than_equal_k_items(folders_dict, k):
"""Gets a dictionary and just keeps the keys which have greater than equal k items."""
to_be_removed = list()
for folder in folders_dict.keys():
if len(folders_dict[folder]) < k:
to_be_removed.append(folder)
for folder in to_be_removed:
del folders_dict[folder]
def get_folders_with_greater_than_equal_k_files(folders, k):
to_be_removed = list()
for folder in folders:
if len(os.listdir(folder)) < k:
to_be_removed.append(folder)
for folder in to_be_removed:
folders.remove(folder)
return folders
def SP(data, K):
A = data
indices = np.random.choice(range(data.shape[1]), K, replace=False)
indices = indices.astype(int)
iter = 0
for iter in range(0, K):
k = iter % K
inds = np.delete(np.copy(indices), k)
A3 = A[:, inds]
At = A - np.random.uniform(low=0.5, high=1) * np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
np.matmul(np.transpose(A3), A))
# Compute just the first column from U and V
svd = TruncatedSVD(n_components=1)
svd.fit(np.transpose(At))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u1 = U[:, 0]
# v = V[:, 1]
u = svd.components_.reshape(-1)
N = np.linalg.norm(At, axis=0)
B = At / N
B = np.transpose(B)
Cr = np.abs(np.matmul(B, u))
# ind = np.argsort(Cr)[::-1]
# p = ind[0]
p = np.argsort(Cr)[-1]
indices[k] = p
# ind2 = np.zeros(K - 1, );
# for iter in range(1, 5):
# for k in range(0, K):
# ind2 = np.delete(inds, k)
# A3 = A[:, ind2]
# At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
# np.matmul(np.transpose(A3), A))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u = U[:, 1]
# v = V[:, 1]
# N = np.linalg.norm(At, axis=0)
# B = At / N
# B = np.transpose(B)
# Cr = np.abs(np.matmul(B, u))
# ind = np.argsort(Cr)[::-1]
# p = ind[0]
# inds[k] = p
return indices
def SP_deterministic(data, K):
A = data
At = data
inds = np.zeros(K, )
inds = inds.astype(int)
iter = 0
for k in range(0, K):
iter = iter + 1
# Compute just the first column from U and V
svd = TruncatedSVD(n_components=1)
svd.fit(np.transpose(At))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u1 = U[:, 0]
# v = V[:, 1]
u = svd.components_.reshape(-1)
N = np.linalg.norm(At, axis=0)
B = At / N
B = np.transpose(B)
Cr = np.abs(np.matmul(B, u))
ind = np.argsort(Cr)[::-1]
p = ind[0]
inds[k] = p
A3 = A[:, inds[0:k + 1]]
At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
np.matmul(np.transpose(A3), A))
# ind2 = np.zeros(K - 1, )
# for iter in range(1, 5):
# for k in range(0, K):
# ind2 = np.delete(inds, k)
# A3 = A[:, ind2]
# At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
# np.matmul(np.transpose(A3), A))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u = U[:, 1]
# v = V[:, 1]
# N = np.linalg.norm(At, axis=0)
# B = At / N
# B = np.transpose(B)
# Cr = np.abs(np.matmul(B, u))
# ind = np.argsort(Cr)[::-1]
# p = ind[0]
# inds[k] = p
return inds
def SSP_with_random_validation_set(features, labels, K, delta=20):
label_values = np.unique(labels)
num_classes = len(label_values)
label_matrix = np.zeros((len(label_values), len(labels)))
for i, label in enumerate(labels):
label_matrix[label, i] = delta
A = np.concatenate((features, label_matrix), axis=0)
At = np.copy(A)
inds = np.zeros(num_classes * K, )
inds = inds.astype(int)
iter = 0
counter = 0
chosen_indices = list()
for k in range(0, K // 2):
iter = iter + 1
# Compute just the first column from U and V
svd = TruncatedSVD(n_components=1)
svd.fit(np.transpose(At))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u1 = U[:, 0]
# v = V[:, 1]
u = svd.components_.reshape(-1)
new_At = At[:4096, :]
N = np.linalg.norm(new_At, axis=0)
B = new_At / N
B = np.transpose(B)
Cr = np.abs(np.matmul(B, u[:4096]))
for label_value in label_values:
x = np.multiply(Cr, A[features.shape[0] + label_value, ...])
ind = np.argsort(x)
inds[label_value * K // 2 + counter] = np.random.choice((ind[-1], ind[-2], ind[-3], ind[-4]), 1, p=(0.5, 0.3, 0.1, 0.1))
chosen_indices.append(inds[label_value * K // 2 + counter])
validation_choices = np.array(np.where(x != 0)).reshape((-1, ))
inds[label_value * K // 2 + counter + 2 * num_classes] = np.random.choice(validation_choices, 1)
counter += 1
# return inds
if k != K // 2 - 1:
A3 = A[:, chosen_indices]
At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
np.matmul(np.transpose(A3), A))
# print(inds)
return inds
def SSP(features, labels, K, delta=10):
label_values = np.unique(labels)
num_classes = len(label_values)
label_matrix = np.zeros((len(label_values), len(labels)))
for i, label in enumerate(labels):
label_matrix[label, i] = delta
A = np.concatenate((features, label_matrix), axis=0)
At = np.copy(A)
inds = np.zeros(num_classes * K, )
inds = inds.astype(int)
iter = 0
counter = 0
for k in range(0, K):
iter = iter + 1
# Compute just the first column from U and V
svd = TruncatedSVD(n_components=1)
svd.fit(np.transpose(At))
# [U, S, V] = np.linalg.svd(At, full_matrices=False)
# u1 = U[:, 0]
# v = V[:, 1]
u = svd.components_.reshape(-1)
N = np.linalg.norm(At, axis=0)
B = At / N
B = np.transpose(B)
Cr = np.abs(np.matmul(B, u))
for label_value in label_values:
x = np.multiply(Cr, A[features.shape[0] + label_value, ...])
ind = np.argsort(x)[::-1]
inds[counter] = np.random.choice((ind[0], ind[1], ind[2], ind[3]), 1, p=(0.5, 0.3, 0.1, 0.1))
counter += 1
A3 = A[:, inds[0:counter + 1]]
At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
np.matmul(np.transpose(A3), A))
return inds
if __name__ == '__main__':
features = np.random.rand(4096, 12000)
labels = [0] * 2000 + [1] * 4000 + [2] * 2600 + [3] * 2000 + [4] * 1400
while True:
indices = SSP_with_random_validation_set(features, labels, 4)
print(indices)
if indices[0] == indices[2] or indices[1] == indices[3] or indices[2] == indices[4]:
break
print(indices)
# data = np.random.rand(40, 73)
# A = data
#
# indices = SP(data, 5)
# A3 = A[:, indices]
# At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
# np.matmul(np.transpose(A3), A))
#
# norm = np.linalg.norm(At)
# print(norm)
#
# for test_case in range(1000):
# rand_numbers = np.random.randint(0, 73, size=5)
# A3 = A[:, rand_numbers]
# At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
# np.matmul(np.transpose(A3), A))
# current_norm = np.linalg.norm(At)
#
# print(current_norm)
# assert(current_norm >= norm)
#
# print(norm)
# indices = SP_deterministic(data, 5)
# A3 = A[:, indices]
# At = A - np.matmul(np.matmul(A3, np.linalg.pinv(np.matmul(np.transpose(A3), A3))),
# np.matmul(np.transpose(A3), A))
#
# print(np.linalg.norm(At))