forked from SSL92/hyperIQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
341 lines (271 loc) · 12.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import torch as torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import init
import math
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class HyperNet(nn.Module):
"""
Hyper network for learning perceptual rules.
Args:
lda_out_channels: local distortion aware module output size.
hyper_in_channels: input feature channels for hyper network.
target_in_size: input vector size for target network.
target_fc(i)_size: fully connection layer size of target network.
feature_size: input feature map width/height for hyper network.
Note:
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
"""
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
super(HyperNet, self).__init__()
self.hyperInChn = hyper_in_channels
self.target_in_size = target_in_size
self.f1 = target_fc1_size
self.f2 = target_fc2_size
self.f3 = target_fc3_size
self.f4 = target_fc4_size
self.feature_size = feature_size
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
# Conv layers for resnet output features
self.conv1 = nn.Sequential(
nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 512, 1, padding=(0, 0)),
nn.ReLU(inplace=True),
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
nn.ReLU(inplace=True)
)
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
# initialize
for i, m_name in enumerate(self._modules):
if i > 2:
nn.init.kaiming_normal_(self._modules[m_name].weight.data)
def forward(self, img):
feature_size = self.feature_size
res_out = self.res(img)
# input vector for target net
target_in_vec = res_out['target_in_vec'].view(-1, self.target_in_size, 1, 1)
# input features for hyper net
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).view(-1, self.hyperInChn, feature_size, feature_size)
# generating target net weights & biases
target_fc1w = self.fc1w_conv(hyper_in_feat).view(-1, self.f1, self.target_in_size, 1, 1)
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f1)
target_fc2w = self.fc2w_conv(hyper_in_feat).view(-1, self.f2, self.f1, 1, 1)
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f2)
target_fc3w = self.fc3w_conv(hyper_in_feat).view(-1, self.f3, self.f2, 1, 1)
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f3)
target_fc4w = self.fc4w_conv(hyper_in_feat).view(-1, self.f4, self.f3, 1, 1)
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f4)
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1, self.f4, 1, 1)
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1)
out = {}
out['target_in_vec'] = target_in_vec
out['target_fc1w'] = target_fc1w
out['target_fc1b'] = target_fc1b
out['target_fc2w'] = target_fc2w
out['target_fc2b'] = target_fc2b
out['target_fc3w'] = target_fc3w
out['target_fc3b'] = target_fc3b
out['target_fc4w'] = target_fc4w
out['target_fc4b'] = target_fc4b
out['target_fc5w'] = target_fc5w
out['target_fc5b'] = target_fc5b
return out
class TargetNet(nn.Module):
"""
Target network for quality prediction.
"""
def __init__(self, paras):
super(TargetNet, self).__init__()
self.l1 = nn.Sequential(
TargetFC(paras['target_fc1w'], paras['target_fc1b']),
nn.Sigmoid(),
)
self.l2 = nn.Sequential(
TargetFC(paras['target_fc2w'], paras['target_fc2b']),
nn.Sigmoid(),
)
self.l3 = nn.Sequential(
TargetFC(paras['target_fc3w'], paras['target_fc3b']),
nn.Sigmoid(),
)
self.l4 = nn.Sequential(
TargetFC(paras['target_fc4w'], paras['target_fc4b']),
nn.Sigmoid(),
TargetFC(paras['target_fc5w'], paras['target_fc5b']),
)
def forward(self, x):
q = self.l1(x)
# q = F.dropout(q)
q = self.l2(q)
q = self.l3(q)
q = self.l4(q).squeeze()
return q
class TargetFC(nn.Module):
"""
Fully connection operations for target net
Note:
Weights & biases are different for different images in a batch,
thus here we use group convolution for calculating images in a batch with individual weights & biases.
"""
def __init__(self, weight, bias):
super(TargetFC, self).__init__()
self.weight = weight
self.bias = bias
def forward(self, input_):
input_re = input_.view(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
weight_re = self.weight.view(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
bias_re = self.bias.view(self.bias.shape[0] * self.bias.shape[1])
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
return out.view(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNetBackbone(nn.Module):
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
super(ResNetBackbone, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# local distortion aware module
self.lda1_pool = nn.Sequential(
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
self.lda2_pool = nn.Sequential(
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
self.lda3_pool = nn.Sequential(
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
self.lda4_pool = nn.AvgPool2d(7, stride=7)
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# initialize
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda1_fc.weight.data)
nn.init.kaiming_normal_(self.lda2_fc.weight.data)
nn.init.kaiming_normal_(self.lda3_fc.weight.data)
nn.init.kaiming_normal_(self.lda4_fc.weight.data)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
# the same effect as lda operation in the paper, but save much more memory
lda_1 = self.lda1_fc(self.lda1_pool(x).view(x.size(0), -1))
x = self.layer2(x)
lda_2 = self.lda2_fc(self.lda2_pool(x).view(x.size(0), -1))
x = self.layer3(x)
lda_3 = self.lda3_fc(self.lda3_pool(x).view(x.size(0), -1))
x = self.layer4(x)
lda_4 = self.lda4_fc(self.lda4_pool(x).view(x.size(0), -1))
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
out = {}
out['hyper_in_feat'] = x
out['target_in_vec'] = vec
return out
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
"""Constructs a ResNet-50 model_hyper.
Args:
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
"""
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
save_model = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
else:
model.apply(weights_init_xavier)
return model
def weights_init_xavier(m):
classname = m.__class__.__name__
# print(classname)
# if isinstance(m, nn.Conv2d):
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm2d') != -1:
init.uniform_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)