forked from danielgordon10/re3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdrawing.py
157 lines (150 loc) · 7.12 KB
/
drawing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import cv2
import numpy as np
BORDER = 0
CV_FONT = cv2.FONT_HERSHEY_DUPLEX
# plots: array of numpy array images to plot. Can be of different sizes and dimensions as long as they are 2 or 3 dimensional.
# rows: int number of rows in subplot. If there are fewer images than rows, it will add empty space for the blanks.
# if there are fewer rows than images, it will not draw the remaining images.
# cols: int number of columns in subplot. Similar to rows.
# outputWidth: int width in pixels of a single subplot output image.
# outputHeight: int height in pixels of a single subplot output image.
# border: int amount of border padding pixels between each image.
# titles: titles for each subplot to be rendered on top of images.
# fancy_text: if true, uses a fancier font than CV_FONT, but takes longer to render.
def subplot(plots, rows, cols, outputWidth, outputHeight, border=BORDER,
titles=None, fancy_text=False):
returnedImage = np.full((
(outputHeight + 2 * border) * rows,
(outputWidth + 2 * border) * cols,
3), 191, dtype=np.uint8)
if fancy_text:
from PIL import Image, ImageDraw, ImageFont
FANCY_FONT = ImageFont.truetype(
'/usr/share/fonts/truetype/roboto/hinted/Roboto-Bold.ttf', 20)
for row in range(rows):
for col in range(cols):
if col + cols * row >= len(plots):
return returnedImage
im = plots[col + cols * row]
if im is None:
continue
if im.dtype != np.uint8 or len(im.shape) < 3:
im = im.astype(np.float32)
im -= np.min(im)
im *= 255 / max(np.max(im), 0.0001)
im = 255 - im.astype(np.uint8)
if len(im.shape) < 3:
im = cv2.applyColorMap(
im, cv2.COLORMAP_JET)
if im.shape != (outputHeight, outputWidth, 3):
imWidth = im.shape[1] * outputHeight / im.shape[0]
if imWidth > outputWidth:
imWidth = outputWidth
imHeight = im.shape[0] * outputWidth / im.shape[1]
else:
imWidth = im.shape[1] * outputHeight / im.shape[0]
imHeight = outputHeight
imWidth = int(imWidth)
imHeight = int(imHeight)
im = cv2.resize(
im, (imWidth, imHeight),
interpolation=cv2.INTER_NEAREST)
if imWidth != outputWidth:
pad0 = int(np.floor((outputWidth - imWidth) * 1.0 / 2))
pad1 = int(np.ceil((outputWidth - imWidth) * 1.0 / 2))
im = np.lib.pad(
im, ((0, 0), (pad0, pad1), (0, 0)),
'constant', constant_values=0)
elif imHeight != outputHeight:
pad0 = int(np.floor((outputHeight - imHeight) * 1.0 / 2))
pad1 = int(np.ceil((outputHeight - imHeight) * 1.0 / 2))
im = np.lib.pad(
im, ((pad0, pad1), (0, 0), (0, 0)),
'constant', constant_values=0)
if (titles is not None and len(titles) > 1 and
len(titles) > col + cols * row and
len(titles[col + cols * row]) > 0):
if fancy_text:
if im.dtype != np.uint8:
im = im.astype(np.uint8)
im = Image.fromarray(im)
draw = ImageDraw.Draw(im)
for x in range(9,12):
for y in range(9, 12):
draw.text((x, y), titles[col + cols * row], (0,0,0),
font=FANCY_FONT)
draw.text((10, 10), titles[col + cols * row], (255,255,255),
font=FANCY_FONT)
im = np.array(im)
else:
cv2.putText(im, titles[col + cols * row], (10, 30), CV_FONT, .5, [0,0,0], 4)
cv2.putText(im, titles[col + cols * row], (10, 30), CV_FONT, .5, [255,255,255], 1)
returnedImage[
border + (outputHeight + border) * row :
(outputHeight + border) * (row + 1),
border + (outputWidth + border) * col :
(outputWidth + border) * (col + 1),:] = im
im = returnedImage
# for one long title
if titles is not None and len(titles) == 1:
if fancy_text:
if im.dtype != np.uint8:
im = im.astype(np.uint8)
im = Image.fromarray(im)
draw = ImageDraw.Draw(im)
for x in range(9,12):
for y in range(9, 12):
draw.text((x, y), titles[0], (0,0,0),
font=FANCY_FONT)
draw.text((10, 10), titles[0], (255,255,255),
font=FANCY_FONT)
im = np.array(im)
else:
cv2.putText(im, titles[0], (10, 30), CV_FONT, .5, [0,0,0], 4)
cv2.putText(im, titles[0], (10, 30), CV_FONT, .5, [255,255,255], 1)
return im
# BBoxes are [x1 y1 x2 y2]
def drawRect(image, bbox, padding, color):
from my_utils.util import bb_util
imageHeight = image.shape[0]
imageWidth = image.shape[1]
bbox = np.round(np.array(bbox)) # mostly just for copying
bbox = bb_util.clip_bbox(bbox, padding, imageWidth - padding, imageHeight - padding).astype(int).squeeze()
padding = int(padding)
image[bbox[1]-padding:bbox[3]+padding+1,
bbox[0]-padding:bbox[0]+padding+1] = color
image[bbox[1]-padding:bbox[3]+padding+1,
bbox[2]-padding:bbox[2]+padding+1] = color
image[bbox[1]-padding:bbox[1]+padding+1,
bbox[0]-padding:bbox[2]+padding+1] = color
image[bbox[3]-padding:bbox[3]+padding+1,
bbox[0]-padding:bbox[2]+padding+1] = color
return image
def drawPoint(image, point, size, padding, color):
if not isinstance(point, np.ndarray):
point = np.array(point)
point = tuple(point.astype(int).tolist())
cv2.circle(image, point, int(size), color, int(padding))
'''
bbox = xywh_to_xyxy([point[0], point[1], size, size])
drawRect(image, bbox, padding, color)
'''
return image
def images_to_sprite(data, padsize=1, padval=0):
# Expects NxHxWx3.
data = data.astype(np.float64)
min = np.min(data.reshape((data.shape[0], -1)), axis=1)
data = (data.transpose(1,2,3,0) - min).transpose(3,0,1,2)
max = np.max(data.reshape((data.shape[0], -1)), axis=1)
data = (data.transpose(1,2,3,0) / max).transpose(3,0,1,2)
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize),
(0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant',
constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3)
+ tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
data = (data * 255).astype(np.uint8)
return data