-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathrun.py
263 lines (218 loc) · 8.48 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from tkinter import ttk
from PIL import Image, ImageTk
from PIL.ImageTk import PhotoImage
from sklearn.metrics import silhouette_score
import config
import spotipy
import pandas as pd
from spotipy.oauth2 import SpotifyClientCredentials
from emotion_video_classifier import emotion_testing
import tkinter as tk
from tkinter import messagebox
client_credentials_manager = SpotifyClientCredentials(client_id=config.cid, client_secret=config.secret)
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
root = tk.Tk()
root.title('CREDENTIALS')
root.geometry("600x400")
root.configure(bg='black')
name1 = tk.StringVar()
photo = PhotoImage(file="musicback.jpg")
l = tk.Label(root, image=photo)
l.image = photo # just keeping a reference
l.grid()
def submit():
global name
name = name_entry.get()
messagebox.showinfo("Information", "Wait for sometime for us to create Playlists")
root.destroy()
name_label = tk.Label(root, text='Enter Name of Artist',
font=('calibre',
10, 'bold'))
name_entry = tk.Entry(root,
textvariable=name1, font=('calibre', 10, 'normal'))
sub_btn = tk.Button(root, text='Submit',
command=submit)
name_label.grid(row=0, column=0)
name_entry.grid(row=3, column=0)
sub_btn.grid(row=5, column=0)
root.mainloop()
result = sp.search(name) # search query
artist_uri = result['tracks']['items'][0]['artists'][0]['uri']
# Pull all of the artist's albums
sp_albums = sp.artist_albums(artist_uri, album_type='album')
# Store artist's albums' names' and uris in separate lists
album_names = []
album_uris = []
for i in range(len(sp_albums['items'])):
album_names.append(sp_albums['items'][i]['name'])
album_uris.append(sp_albums['items'][i]['uri'])
def albumSongs(uri):
album = uri # assign album uri to a_name
spotify_albums[album] = {} # Creates dictionary for that specific album
# Create keys-values of empty lists inside nested dictionary for album
spotify_albums[album]['album'] = [] # create empty list
spotify_albums[album]['track_number'] = []
spotify_albums[album]['id'] = []
spotify_albums[album]['name'] = []
spotify_albums[album]['uri'] = []
tracks = sp.album_tracks(album) # pull data on album tracks
for n in range(len(tracks['items'])): # for each song track
spotify_albums[album]['album'].append(album_names[album_count]) # append album name tracked via album_count
spotify_albums[album]['track_number'].append(tracks['items'][n]['track_number'])
spotify_albums[album]['id'].append(tracks['items'][n]['id'])
spotify_albums[album]['name'].append(tracks['items'][n]['name'])
spotify_albums[album]['uri'].append(tracks['items'][n]['uri'])
spotify_albums = {}
album_count = 0
for i in album_uris: # each album
albumSongs(i)
print("Album " + str(album_names[album_count]) + " songs has been added to spotify_albums dictionary")
album_count += 1 # Updates album count once all tracks have been added
def audio_features(album):
# Add new key-values to store audio features
spotify_albums[album]['acousticness'] = []
spotify_albums[album]['danceability'] = []
spotify_albums[album]['energy'] = []
spotify_albums[album]['instrumentalness'] = []
spotify_albums[album]['liveness'] = []
spotify_albums[album]['loudness'] = []
spotify_albums[album]['speechiness'] = []
spotify_albums[album]['tempo'] = []
spotify_albums[album]['valence'] = []
spotify_albums[album]['popularity'] = []
# create a track counter
track_count = 0
for track in spotify_albums[album]['uri']:
# pull audio features per track
features = sp.audio_features(track)
# Append to relevant key-value
spotify_albums[album]['acousticness'].append(features[0]['acousticness'])
spotify_albums[album]['danceability'].append(features[0]['danceability'])
spotify_albums[album]['energy'].append(features[0]['energy'])
spotify_albums[album]['instrumentalness'].append(features[0]['instrumentalness'])
spotify_albums[album]['liveness'].append(features[0]['liveness'])
spotify_albums[album]['loudness'].append(features[0]['loudness'])
spotify_albums[album]['speechiness'].append(features[0]['speechiness'])
spotify_albums[album]['tempo'].append(features[0]['tempo'])
spotify_albums[album]['valence'].append(features[0]['valence'])
# popularity is stored elsewhere
pop = sp.track(track)
spotify_albums[album]['popularity'].append(pop['popularity'])
track_count += 1
import time
import numpy as np
sleep_min = 2
sleep_max = 5
start_time = time.time()
request_count = 0
for i in spotify_albums:
audio_features(i)
request_count += 1
if request_count % 5 == 0:
print(str(request_count) + " playlists completed")
time.sleep(np.random.uniform(sleep_min, sleep_max))
print('Loop : {}'.format(request_count))
print('Elapsed Time: {} seconds'.format(time.time() - start_time))
dic_df = {}
dic_df['album'] = []
dic_df['track_number'] = []
dic_df['id'] = []
dic_df['name'] = []
dic_df['uri'] = []
dic_df['acousticness'] = []
dic_df['danceability'] = []
dic_df['energy'] = []
dic_df['instrumentalness'] = []
dic_df['liveness'] = []
dic_df['loudness'] = []
dic_df['speechiness'] = []
dic_df['tempo'] = []
dic_df['valence'] = []
dic_df['popularity'] = []
for album in spotify_albums:
for feature in spotify_albums[album]:
dic_df[feature].extend(spotify_albums[album][feature])
length = len(dic_df['album'])
data = pd.DataFrame.from_dict(dic_df)
data.drop_duplicates(inplace=True, subset=['name'])
name = data['name']
df = pd.read_csv('Spotify Dataset Analysis/data.csv.zip', compression='zip')
df.drop_duplicates(inplace=True, subset=['name'])
name = df['name']
data1 = data.append(df)
name = data1['name']
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
col_features = ['danceability', 'energy', 'valence', 'loudness']
X = MinMaxScaler().fit_transform(data1[col_features])
kmeans = KMeans(init="k-means++",
n_clusters=2,
random_state=15).fit(X)
data1['kmeans'] = kmeans.labels_
# print(silhouette_score(X, data1['kmeans'], metric='euclidean'))
data2 = data1[:data.shape[0]]
cluster = data2.groupby(by=data2['kmeans'])
data2.pop('kmeans')
df1 = cluster.apply(lambda x: x.sort_values(["popularity"], ascending=False))
df1.reset_index(level=0, inplace=True)
def get_results(emotion_code):
NUM_RECOMMEND = 10
happy_set = []
sad_set = []
if emotion_code == 0:
happy_set.append(df1[df1['kmeans'] == 0]['name'].head(NUM_RECOMMEND))
return pd.DataFrame(happy_set).T
else:
sad_set.append(df1[df1['kmeans'] == 1]['name'].head(NUM_RECOMMEND))
return pd.DataFrame(sad_set).T
def final():
root1 = tk.Tk()
root1.title("Your Playlist")
root1.configure(bg='black')
df = get_results(emotion_code)
cols = list(df.columns)
tree = ttk.Treeview(root1)
tree.pack(side=tk.TOP, fill=tk.X)
tree["columns"] = cols
for k in cols:
tree.column(k, anchor="w")
tree.heading(k, text=k, anchor='w')
for index, row in df.iterrows():
tree.insert("", 0, text=index, values=list(row))
root1.mainloop()
if emotion_word == 'sad':
print('emotion detected is SAD')
else:
print('emotion detected is HAPPY')
emotion_word = (emotion_testing())
if emotion_word == 'sad':
emotion_code = 0
else:
emotion_code = 1
window = tk.Tk()
window.title("Music Recommender System")
window.configure(background='black')
window.grid_rowconfigure(0, weight=1)
window.grid_columnconfigure(0, weight=1)
message = tk.Label(
window, text="Music Recommender System",
bg="yellow", fg="black", width=50,
height=3, font=('times', 30, 'bold'))
message.place(x=200, y=20)
pred = tk.Button(window, text="print",
command=final, fg="white", bg="black",
width=20, height=3, activebackground="Red",
font=('times', 15, ' bold '))
pred.place(x=200, y=500)
quitWindow = tk.Button(window, text="Quit",
command=window.destroy, fg="white", bg="black",
width=20, height=3, activebackground="Red",
font=('times', 15, ' bold '))
quitWindow.place(x=1100, y=500)
image1 = Image.open("musicimg (1).jpg")
test = ImageTk.PhotoImage(image1)
label1 = tk.Label(image=test)
label1.image = test
label1.place(x=470, y=150)
root.mainloop()
window.mainloop()