-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcontrol
157 lines (152 loc) · 8.34 KB
/
control
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
Source: shogun
Section: science
Priority: optional
Maintainer: Soeren Sonnenburg <[email protected]>
Build-Depends:
cmake (>= 3.1.0),
liblapack-dev, liblapacke-dev, libeigen3-dev,
debhelper (>= 9),
exuberant-ctags,
libreadline-dev | libreadline5-dev,
ghostscript, doxygen-latex, graphviz,
libblas-dev, libglpk-dev, libnlopt-dev, libbsd-dev, libarpack2-dev,
liblzo2-dev, zlib1g-dev, liblzma-dev, libsnappy-dev, libbz2-dev,
libhdf5-dev (>= 1.8.8~) | libhdf5-serial-dev, libxml2-dev, libjson-c-dev, libprotobuf-dev, protobuf-compiler,
libcurl4-gnutls-dev,
clang [mips mipsel powerpc],
python, python-numpy (>= 1:1.7.1-1~), python-all-dev (>= 2.7.0-1~), python-sphinx, python-ply,
swig3.0 (>= 3.0.5)
Standards-Version: 3.9.5
Homepage: http://www.shogun.ml
Vcs-Git: https://github.com/shogun-toolbox/shogun-debian.git
Vcs-Browser: https://github.com/shogun-toolbox/shogun-debian
Package: libshogun18
Conflicts: libshogunui6, libshogunui5, libshogunui4, libshogunui3,
libshogunui2, libshogunui1, libshogunui0
Architecture: any
Section: libs
Depends: ${shlibs:Depends}, ${misc:Depends}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the core
library with the machine learning methods and ui helpers all interfaces are
based on.
Package: libshogun-dev
Section: libdevel
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}, libshogun18 (= ${binary:Version})
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package
includes the developer files required to create stand-a-lone executables.
Package: shogun-doc-en
Conflicts: shogun-doc
Replaces: shogun-doc
Section: doc
Architecture: all
Recommends: libshogun-dev
Depends: ${misc:Depends}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the English
user and developer documentation.
Package: libshogun18-dbg
Breaks: shogun-dbg
Replaces: shogun-dbg
Section: debug
Priority: extra
Architecture: any
Depends: ${misc:Depends}, libshogun18 (= ${binary:Version})
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package
contains debug symbols for all interfaces.
Package: python-shogun
Architecture: any
Depends: libshogun18 (= ${binary:Version}), ${shlibs:Depends}, ${misc:Depends}, ${python:Depends}, python-numpy
Recommends: python-matplotlib, python-scipy
Provides: ${python:Provides}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package contains
the static and the modular Python interfaces.