- HAM10000
- ISIC2016
- ISIC2017
- ISIC2018
- ISIC2019
- ISIC2020
- PH2
- 7-point criteria dataset
- PAD_UFES_20
- MED-NODE
- Kaggle
DBs | Network | Img size | Private Score 1 | Public Score 2 |
---|---|---|---|---|
ISIC'16+ISIC'17+ISIC'18+ISIC'19+MEDNODE+Kaggle | DenseNet121 | 150x150 | 0.7211 | 0.7472 |
ISIC'18 | ResNet50 | 150x150 | 0.5999 | 0.6301 |
ISIC'20 | ResNet50 | 150x150 | 0.7751 | 0.8126 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2 | ResNet152 | 150x150 | 0.8064 | 0.8073 |
ISIC'19 | ResNet152 | 150x150 | 0.6769 | 0.7234 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2+ 7pointcriteria+PAD_UFES_20+MEDNODE+Kaggle |
ResNet152 | 150x150 | 0.7774 | 0.7894 |
Multiple 3 | Ensemble 4 | 150x150 | 0.7618 | 0.7621 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2 | ResNet152 | 384x384 | 0.7028 | 0.7134 |
ISIC'16+ISIC'17+ISIC2018+ISIC'19 | DenseNet169 | 384x384 | 0.6943 | 0.7471 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC2020+PH2+ _7_point_criteria+PAD_UFES_20+MEDNODE+KaggleMB |
DenseNet169 | 384x384 | 0.7963 | 0.8535 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2+ MEDNODE+KaggleMB |
DenseNet169 | 384x384 | 0.8028 | 0.8247 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2+ PAD_UFES_20+MEDNODE |
DenseNet169 | 384x384 | 0.7980 | 0.8338 |
ISIC'16+ISIC'17+ISIC'18+_7_point_criteria+ PAD_UFES_20 |
ResNet50 | 384x384 | 0.4199 | 0.4484 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2 | ResNet152 | 384x384 | 0.7028 | 0.7234 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2+ _7_point_criteria+PAD_UFES_20+MEDNODE |
ResNet152V2 | 384x384 | 0.8144 | 0.8284 |
ISIC'16+MEDNODE | Xception | 384x384 | 0.7409 | 0.7474 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20+PH2+ _7_point_criteria+PAD_UFES_20+MEDNODE+KaggleMB |
ResNet152V2 | 384x384 | 0.8009 | 0.8219 |
ISIC'16+ISIC'18+ISIC'19+ISIC'20 | DenseNet169 | 384x384 | 0.8195 | 0.8619 |
ISIC'16+ISIC'17+ISIC'18+ISIC'19+ISIC'20 | DenseNet169 | 384x384 | 0.7673 | 0.8267 |
1 Score on 70% of private testsets. The potential winner(s) are determined solely by the leaderboard ranking on the private leaderboard.
2 Score on the public testsets for reference
3 Averaged the models in the table, trained with multiple datasets
4 Averaged the probabilities from the models in the table
- Keras - 2.5.0rc0
- Tensorflow - 2.5.0
- Augmentor - 0.2.10
- matplotlib==3.2.1
- pandas==1.2.0
- numpy==1.19.4
- pip install pydot
- conda install -c anaconda graphviz