forked from haoyuhu/bert-multi-gpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_optimization.py
271 lines (220 loc) · 10.8 KB
/
custom_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training.optimizer import Optimizer
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import resource_variable_ops
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, fp16=False):
"""Creates an optimizer training op."""
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
# Implements linear decay of the learning rate.
learning_rate = tf.train.polynomial_decay(
learning_rate,
global_step,
num_train_steps,
end_learning_rate=0.0,
power=1.0,
cycle=False)
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
if num_warmup_steps:
global_steps_int = tf.cast(global_step, tf.int32)
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
global_steps_float = tf.cast(global_steps_int, tf.float32)
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = init_lr * warmup_percent_done
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
learning_rate = (
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
# It is recommended that you use this optimizer for fine tuning, since this
# is how the model was trained (note that the Adam m/v variables are NOT
# loaded from init_checkpoint.)
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
# REF: https://github.com/tensorflow/tensorflow/issues/25080
# if fp16:
# loss_scale_manager = tf.contrib.mixed_precision.ExponentialUpdateLossScaleManager(
# init_loss_scale=2 ** 32,
# incr_every_n_steps=1000,
# decr_every_n_nan_or_inf=2,
# decr_ratio=0.5)
# optimizer = tf.contrib.mixed_precision.LossScaleOptimizer(optimizer, loss_scale_manager)
tvars = tf.trainable_variables()
gvs = optimizer.compute_gradients(loss, tvars)
gvs = [(g, v) for g, v in gvs if g is not None]
grads, tvars = list(zip(*gvs))
if fp16:
all_finite = tf.reduce_all([tf.reduce_all(tf.is_finite(g)) for g in grads])
else:
all_finite = tf.constant(True, dtype=tf.bool)
# This is how the model was pre-trained.
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0,
use_norm=tf.cond(
all_finite,
lambda: tf.global_norm(grads),
lambda: tf.constant(1.0)))
train_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=global_step)
# Normally the global step update is done inside of `apply_gradients`.
# However, `AdamWeightDecayOptimizer` doesn't do this. But if you use
# a different optimizer, you should probably take this line out.
new_global_step = tf.cond(all_finite, lambda: global_step + 1, lambda: global_step)
new_global_step = tf.identity(new_global_step, name='update_step')
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
return train_op
class AdamWeightDecayOptimizer(Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = tf.identity(learning_rate, name='learning_rate')
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def _prepare(self):
self.learning_rate_t = ops.convert_to_tensor(
self.learning_rate, name='learning_rate')
self.weight_decay_rate_t = ops.convert_to_tensor(
self.weight_decay_rate, name='weight_decay_rate')
self.beta_1_t = ops.convert_to_tensor(self.beta_1, name='beta_1')
self.beta_2_t = ops.convert_to_tensor(self.beta_2, name='beta_2')
self.epsilon_t = ops.convert_to_tensor(self.epsilon, name='epsilon')
def _create_slots(self, var_list):
for v in var_list:
self._zeros_slot(v, 'm', self._name)
self._zeros_slot(v, 'v', self._name)
def _apply_dense(self, grad, var):
learning_rate_t = math_ops.cast(
self.learning_rate_t, var.dtype.base_dtype)
beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
weight_decay_rate_t = math_ops.cast(
self.weight_decay_rate_t, var.dtype.base_dtype)
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
# Standard Adam update.
next_m = (
tf.multiply(beta_1_t, m) +
tf.multiply(1.0 - beta_1_t, grad))
next_v = (
tf.multiply(beta_2_t, v) + tf.multiply(1.0 - beta_2_t,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + epsilon_t)
if self._do_use_weight_decay(var.name):
update += weight_decay_rate_t * var
update_with_lr = learning_rate_t * update
next_param = var - update_with_lr
return control_flow_ops.group(*[var.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
def _resource_apply_dense(self, grad, var):
learning_rate_t = math_ops.cast(
self.learning_rate_t, var.dtype.base_dtype)
beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
weight_decay_rate_t = math_ops.cast(
self.weight_decay_rate_t, var.dtype.base_dtype)
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
# Standard Adam update.
next_m = (
tf.multiply(beta_1_t, m) +
tf.multiply(1.0 - beta_1_t, grad))
next_v = (
tf.multiply(beta_2_t, v) + tf.multiply(1.0 - beta_2_t,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + epsilon_t)
if self._do_use_weight_decay(var.name):
update += weight_decay_rate_t * var
update_with_lr = learning_rate_t * update
next_param = var - update_with_lr
return control_flow_ops.group(*[var.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
learning_rate_t = math_ops.cast(
self.learning_rate_t, var.dtype.base_dtype)
beta_1_t = math_ops.cast(self.beta_1_t, var.dtype.base_dtype)
beta_2_t = math_ops.cast(self.beta_2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self.epsilon_t, var.dtype.base_dtype)
weight_decay_rate_t = math_ops.cast(
self.weight_decay_rate_t, var.dtype.base_dtype)
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
m_t = state_ops.assign(m, m * beta_1_t,
use_locking=self._use_locking)
m_scaled_g_values = grad * (1 - beta_1_t)
with ops.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
v_scaled_g_values = (grad * grad) * (1 - beta_2_t)
v_t = state_ops.assign(v, v * beta_2_t, use_locking=self._use_locking)
with ops.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
update = m_t / (math_ops.sqrt(v_t) + epsilon_t)
if self._do_use_weight_decay(var.name):
update += weight_decay_rate_t * var
update_with_lr = learning_rate_t * update
var_update = state_ops.assign_sub(var,
update_with_lr,
use_locking=self._use_locking)
return control_flow_ops.group(*[var_update, m_t, v_t])
def _apply_sparse(self, grad, var):
return self._apply_sparse_shared(
grad.values, var, grad.indices,
lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda
x, i, v, use_locking=self._use_locking))
def _resource_scatter_add(self, x, i, v):
with ops.control_dependencies(
[resource_variable_ops.resource_scatter_add(
x.handle, i, v)]):
return x.value()
def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(
grad, var, indices, self._resource_scatter_add)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True