-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_image.py
409 lines (341 loc) · 17.9 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import argparse
import utils
import random
import os
from utils import logger, tools
import logging
import colorama
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.optim as optim
from modules import networks_2d
from modules.losses import kl_criterion
from modules.utils import calc_gradient_penalty
from datasets.image import SingleImageDataset
clear = colorama.Style.RESET_ALL
blue = colorama.Fore.CYAN + colorama.Style.BRIGHT
green = colorama.Fore.GREEN + colorama.Style.BRIGHT
magenta = colorama.Fore.MAGENTA + colorama.Style.BRIGHT
def train(opt, netG):
if opt.vae_levels < opt.scale_idx + 1:
D_curr = getattr(networks_2d, opt.discriminator)(opt).to(opt.device)
if (opt.netG != '') and (opt.resumed_idx == opt.scale_idx):
D_curr.load_state_dict(
torch.load('{}/netD_{}.pth'.format(opt.resume_dir, opt.scale_idx - 1))['state_dict'])
elif opt.vae_levels < opt.scale_idx:
D_curr.load_state_dict(
torch.load('{}/netD_{}.pth'.format(opt.saver.experiment_dir, opt.scale_idx - 1))['state_dict'])
# Current optimizers
optimizerD = optim.Adam(D_curr.parameters(), lr=opt.lr_d, betas=(opt.beta1, 0.999))
parameter_list = []
# Generator Adversary
if not opt.train_all:
if opt.vae_levels < opt.scale_idx + 1:
train_depth = min(opt.train_depth, len(netG.body) - opt.vae_levels + 1)
parameter_list += [
{"params": block.parameters(),
"lr": opt.lr_g * (opt.lr_scale ** (len(netG.body[-train_depth:]) - 1 - idx))}
for idx, block in enumerate(netG.body[-train_depth:])]
else:
# VAE
parameter_list += [{"params": netG.encode.parameters(), "lr": opt.lr_g * (opt.lr_scale ** opt.scale_idx)},
{"params": netG.decoder.parameters(), "lr": opt.lr_g * (opt.lr_scale ** opt.scale_idx)}]
parameter_list += [
{"params": block.parameters(),
"lr": opt.lr_g * (opt.lr_scale ** (len(netG.body[-opt.train_depth:]) - 1 - idx))}
for idx, block in enumerate(netG.body[-opt.train_depth:])]
else:
if len(netG.body) < opt.train_depth:
parameter_list += [{"params": netG.encode.parameters(), "lr": opt.lr_g * (opt.lr_scale ** opt.scale_idx)},
{"params": netG.decoder.parameters(), "lr": opt.lr_g * (opt.lr_scale ** opt.scale_idx)}]
parameter_list += [
{"params": block.parameters(),
"lr": opt.lr_g * (opt.lr_scale ** (len(netG.body) - 1 - idx))}
for idx, block in enumerate(netG.body)]
else:
parameter_list += [
{"params": block.parameters(),
"lr": opt.lr_g * (opt.lr_scale ** (len(netG.body[-opt.train_depth:]) - 1 - idx))}
for idx, block in enumerate(netG.body[-opt.train_depth:])]
optimizerG = optim.Adam(parameter_list, lr=opt.lr_g, betas=(opt.beta1, 0.999))
# Parallel
if opt.device == 'cuda':
G_curr = torch.nn.DataParallel(netG)
if opt.vae_levels < opt.scale_idx + 1:
D_curr = torch.nn.DataParallel(D_curr)
else:
G_curr = netG
progressbar_args = {
"iterable": range(opt.niter),
"desc": "Training scale [{}/{}]".format(opt.scale_idx + 1, opt.stop_scale + 1),
"train": True,
"offset": 0,
"logging_on_update": False,
"logging_on_close": True,
"postfix": True
}
epoch_iterator = tools.create_progressbar(**progressbar_args)
iterator = iter(data_loader)
for iteration in epoch_iterator:
try:
data = next(iterator)
except StopIteration:
iterator = iter(opt.data_loader)
data = next(iterator)
if opt.scale_idx > 0:
real, real_zero = data
real = real.to(opt.device)
real_zero = real_zero.to(opt.device)
else:
real = data.to(opt.device)
real_zero = real
initial_size = utils.get_scales_by_index(0, opt.scale_factor, opt.stop_scale, opt.img_size)
initial_size = [int(initial_size * opt.ar), initial_size]
opt.Z_init_size = [opt.batch_size, opt.latent_dim, *initial_size]
noise_init = utils.generate_noise(size=opt.Z_init_size, device=opt.device)
############################
# calculate noise_amp
###########################
if iteration == 0:
if opt.const_amp:
opt.Noise_Amps.append(1)
else:
with torch.no_grad():
if opt.scale_idx == 0:
opt.noise_amp = 1
opt.Noise_Amps.append(opt.noise_amp)
else:
opt.Noise_Amps.append(0)
z_reconstruction, _, _ = G_curr(real_zero, opt.Noise_Amps, mode="rec")
RMSE = torch.sqrt(F.mse_loss(real, z_reconstruction))
opt.noise_amp = opt.noise_amp_init * RMSE.item() / opt.batch_size
opt.Noise_Amps[-1] = opt.noise_amp
############################
# (1) Update VAE network
###########################
total_loss = 0
generated, generated_vae, (mu, logvar) = G_curr(real_zero, opt.Noise_Amps, mode="rec")
if opt.vae_levels >= opt.scale_idx + 1:
rec_vae_loss = opt.rec_loss(generated, real) + opt.rec_loss(generated_vae, real_zero)
kl_loss = kl_criterion(mu, logvar)
vae_loss = opt.rec_weight * rec_vae_loss + opt.kl_weight * kl_loss
total_loss += vae_loss
else:
############################
# (2) Update D network: maximize D(x) + D(G(z))
###########################
# train with real
#################
# Train 3D Discriminator
D_curr.zero_grad()
output = D_curr(real)
errD_real = -output.mean()
# train with fake
#################
fake, _ = G_curr(noise_init, opt.Noise_Amps, noise_init=noise_init, mode="rand")
# Train 3D Discriminator
output = D_curr(fake.detach())
errD_fake = output.mean()
gradient_penalty = calc_gradient_penalty(D_curr, real, fake, opt.lambda_grad, opt.device)
errD_total = errD_real + errD_fake + gradient_penalty
errD_total.backward()
optimizerD.step()
############################
# (3) Update G network: maximize D(G(z))
###########################
errG_total = 0
rec_loss = opt.rec_loss(generated, real)
errG_total += opt.rec_weight * rec_loss
# Train with 3D Discriminator
output = D_curr(fake)
errG = -output.mean() * opt.disc_loss_weight
errG_total += errG
total_loss += errG_total
G_curr.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(G_curr.parameters(), opt.grad_clip)
optimizerG.step()
# Update progress bar
epoch_iterator.set_description('Scale [{}/{}], Iteration [{}/{}]'.format(
opt.scale_idx + 1, opt.stop_scale + 1,
iteration + 1, opt.niter,
))
if opt.visualize:
# Tensorboard
opt.summary.add_scalar('Video/Scale {}/noise_amp'.format(opt.scale_idx), opt.noise_amp, iteration)
if opt.vae_levels >= opt.scale_idx + 1:
opt.summary.add_scalar('Video/Scale {}/KLD'.format(opt.scale_idx), kl_loss.item(), iteration)
else:
opt.summary.add_scalar('Video/Scale {}/rec loss'.format(opt.scale_idx), rec_loss.item(), iteration)
opt.summary.add_scalar('Video/Scale {}/noise_amp'.format(opt.scale_idx), opt.noise_amp, iteration)
if opt.vae_levels < opt.scale_idx + 1:
opt.summary.add_scalar('Video/Scale {}/errG'.format(opt.scale_idx), errG.item(), iteration)
opt.summary.add_scalar('Video/Scale {}/errD_fake'.format(opt.scale_idx), errD_fake.item(), iteration)
opt.summary.add_scalar('Video/Scale {}/errD_real'.format(opt.scale_idx), errD_real.item(), iteration)
else:
opt.summary.add_scalar('Video/Scale {}/Rec VAE'.format(opt.scale_idx), rec_vae_loss.item(), iteration)
if iteration % opt.print_interval == 0:
with torch.no_grad():
fake_var = []
fake_vae_var = []
for _ in range(3):
noise_init = utils.generate_noise(ref=noise_init)
fake, fake_vae = G_curr(noise_init, opt.Noise_Amps, noise_init=noise_init, mode="rand")
fake_var.append(fake)
fake_vae_var.append(fake_vae)
fake_var = torch.cat(fake_var, dim=0)
fake_vae_var = torch.cat(fake_vae_var, dim=0)
opt.summary.visualize_image(opt, iteration, real, 'Real')
opt.summary.visualize_image(opt, iteration, generated, 'Generated')
opt.summary.visualize_image(opt, iteration, generated_vae, 'Generated VAE')
opt.summary.visualize_image(opt, iteration, fake_var, 'Fake var')
opt.summary.visualize_image(opt, iteration, fake_vae_var, 'Fake VAE var')
epoch_iterator.close()
# Save data
opt.saver.save_checkpoint({'data': opt.Noise_Amps}, 'Noise_Amps.pth')
opt.saver.save_checkpoint({
'scale': opt.scale_idx,
'state_dict': netG.state_dict(),
'optimizer': optimizerG.state_dict(),
'noise_amps': opt.Noise_Amps,
}, 'netG.pth')
if opt.vae_levels < opt.scale_idx + 1:
opt.saver.save_checkpoint({
'scale': opt.scale_idx,
'state_dict': D_curr.module.state_dict() if opt.device == 'cuda' else D_curr.state_dict(),
'optimizer': optimizerD.state_dict(),
}, 'netD_{}.pth'.format(opt.scale_idx))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# load, input, save configurations:
parser.add_argument('--netG', default='', help='path to netG (to continue training)')
parser.add_argument('--netD', default='', help='path to netD (to continue training)')
parser.add_argument('--manualSeed', type=int, help='manual seed')
# networks hyper parameters:
parser.add_argument('--nc-im', type=int, default=3, help='# channels')
parser.add_argument('--nfc', type=int, default=64, help='model basic # channels')
parser.add_argument('--latent-dim', type=int, default=128, help='Latent dim size')
parser.add_argument('--vae-levels', type=int, default=3, help='# VAE levels')
parser.add_argument('--enc-blocks', type=int, default=2, help='# encoder blocks')
parser.add_argument('--ker-size', type=int, default=3, help='kernel size')
parser.add_argument('--num-layer', type=int, default=5, help='number of layers')
parser.add_argument('--stride', default=1, help='stride')
parser.add_argument('--padd-size', type=int, default=1, help='net pad size')
parser.add_argument('--generator', type=str, default='GeneratorHPVAEGAN', help='generator model')
parser.add_argument('--discriminator', type=str, default='WDiscriminator2D', help='discriminator model')
# pyramid parameters:
parser.add_argument('--scale-factor', type=float, default=0.75, help='pyramid scale factor')
parser.add_argument('--noise_amp', type=float, default=0.1, help='addative noise cont weight')
parser.add_argument('--min-size', type=int, default=32, help='image minimal size at the coarser scale')
parser.add_argument('--max-size', type=int, default=256, help='image minimal size at the coarser scale')
# optimization hyper parameters:
parser.add_argument('--niter', type=int, default=5000, help='number of iterations to train per scale')
parser.add_argument('--lr-g', type=float, default=0.0005, help='learning rate, default=0.0005')
parser.add_argument('--lr-d', type=float, default=0.0005, help='learning rate, default=0.0005')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--lambda-grad', type=float, default=0.1, help='gradient penelty weight')
parser.add_argument('--rec-weight', type=float, default=10., help='reconstruction loss weight')
parser.add_argument('--kl-weight', type=float, default=1., help='reconstruction loss weight')
parser.add_argument('--disc-loss-weight', type=float, default=1.0, help='discriminator weight')
parser.add_argument('--lr-scale', type=float, default=0.2, help='scaling of learning rate for lower stages')
parser.add_argument('--train-depth', type=int, default=1, help='how many layers are trained if growing')
parser.add_argument('--grad-clip', type=float, default=5, help='gradient clip')
parser.add_argument('--const-amp', action='store_true', default=False, help='constant noise amplitude')
parser.add_argument('--train-all', action='store_true', default=False, help='train all levels w.r.t. train-depth')
# Dataset
parser.add_argument('--image-path', required=True, help="image path")
parser.add_argument('--hflip', action='store_true', default=False, help='horizontal flip')
parser.add_argument('--img-size', type=int, default=256)
parser.add_argument('--stop-scale-time', type=int, default=-1)
parser.add_argument('--data-rep', type=int, default=1000, help='data repetition')
# main arguments
parser.add_argument('--checkname', type=str, default='DEBUG', help='check name')
parser.add_argument('--mode', default='train', help='task to be done')
parser.add_argument('--batch-size', type=int, default=2, help='batch size')
parser.add_argument('--print-interval', type=int, default=100, help='print interva')
parser.add_argument('--visualize', action='store_true', default=False, help='visualize using tensorboard')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables cuda')
parser.set_defaults(hflip=False)
opt = parser.parse_args()
assert opt.vae_levels > 0
assert opt.disc_loss_weight > 0
if opt.data_rep < opt.batch_size:
opt.data_rep = opt.batch_size
# Define Saver
opt.saver = utils.ImageSaver(opt)
# Define Tensorboard Summary
opt.summary = utils.TensorboardSummary(opt.saver.experiment_dir)
logger.configure_logging(os.path.abspath(os.path.join(opt.saver.experiment_dir, 'logbook.txt')))
# CUDA
device = 'cuda' if torch.cuda.is_available() and not opt.no_cuda else 'cpu'
opt.device = device
if torch.cuda.is_available() and device == 'cpu':
logging.info("WARNING: You have a CUDA device, so you should probably run with --cuda")
# Initial config
opt.noise_amp_init = opt.noise_amp
opt.scale_factor_init = opt.scale_factor
# Adjust scales
utils.adjust_scales2image(opt.img_size, opt)
# Manual seed
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
logging.info("Random Seed: {}".format(opt.manualSeed))
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
# Reconstruction loss
opt.rec_loss = torch.nn.MSELoss()
# Initial parameters
opt.scale_idx = 0
opt.nfc_prev = 0
opt.Noise_Amps = []
# Date
dataset = SingleImageDataset(opt)
data_loader = DataLoader(dataset,
shuffle=True,
drop_last=True,
batch_size=opt.batch_size,
num_workers=4)
if opt.stop_scale_time == -1:
opt.stop_scale_time = opt.stop_scale
opt.dataset = dataset
opt.data_loader = data_loader
with open(os.path.join(opt.saver.experiment_dir, 'args.txt'), 'w') as args_file:
for argument, value in sorted(vars(opt).items()):
if type(value) in (str, int, float, tuple, list, bool):
args_file.write('{}: {}\n'.format(argument, value))
with logger.LoggingBlock("Commandline Arguments", emph=True):
for argument, value in sorted(vars(opt).items()):
if type(value) in (str, int, float, tuple, list):
logging.info('{}: {}'.format(argument, value))
with logger.LoggingBlock("Experiment Summary", emph=True):
video_file_name, checkname, experiment = opt.saver.experiment_dir.split('/')[-3:]
logging.info("{}Checkname :{} {}{}".format(magenta, clear, checkname, clear))
logging.info("{}Experiment :{} {}{}".format(magenta, clear, experiment, clear))
with logger.LoggingBlock("Commandline Summary", emph=True):
logging.info("{}Generator :{} {}{}".format(blue, clear, opt.generator, clear))
logging.info("{}Iterations :{} {}{}".format(blue, clear, opt.niter, clear))
logging.info("{}Rec. Weight :{} {}{}".format(blue, clear, opt.rec_weight, clear))
# Current networks
assert hasattr(networks_2d, opt.generator)
netG = getattr(networks_2d, opt.generator)(opt).to(opt.device)
if opt.netG != '':
if not os.path.isfile(opt.netG):
raise RuntimeError("=> no <G> checkpoint found at '{}'".format(opt.netG))
checkpoint = torch.load(opt.netG)
opt.scale_idx = checkpoint['scale']
opt.resumed_idx = checkpoint['scale']
opt.resume_dir = '/'.join(opt.netG.split('/')[:-1])
for _ in range(opt.scale_idx):
netG.init_next_stage()
netG.load_state_dict(checkpoint['state_dict'])
# NoiseAmp
opt.Noise_Amps = torch.load(os.path.join(opt.resume_dir, 'Noise_Amps.pth'))['data']
else:
opt.resumed_idx = -1
while opt.scale_idx < opt.stop_scale + 1:
if (opt.scale_idx > 0) and (opt.resumed_idx != opt.scale_idx):
netG.init_next_stage()
train(opt, netG)
# Increase scale
opt.scale_idx += 1