-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
68 lines (62 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from torch.utils.data import DataLoader
import torch.optim as optim
import torch
import time
import math
import numpy as np
import random
import os
from MultimodalTransformer import MultimodalTransformer
from train_and_test import MSBT_train as train
from train_and_test import MSBT_test as test
import option
from utils import Prepare_logger
from load_dataset import Dataset
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
global logger
torch.multiprocessing.set_start_method('spawn')
args = option.parser.parse_args()
setup_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
train_loader = DataLoader(Dataset(args, test_mode=False),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = DataLoader(Dataset(args, test_mode=True),
batch_size=5, shuffle=False,
num_workers=args.workers, pin_memory=True)
model_MT = MultimodalTransformer(args).cuda()
gt = np.load(args.gt)
if args.eval:
state_dict = torch.load(args.model_path)
model_MT.load_state_dict(state_dict, True)
model_MT.eval()
test_ap = test(test_loader, model_MT, gt)
print ('Test AP: {:.4}'.format(test_ap))
else:
if not os.path.exists('./log'):
os.makedirs('./log')
if not os.path.exists('./ckpt'):
os.makedirs('./ckpt')
logger = Prepare_logger()
logger.info(args)
criterion = torch.nn.BCELoss()
optimizer_MT = optim.SGD(model_MT.parameters(), lr=args.lr, weight_decay=0.0005)
best_test_ap = 0
best_epoch = 0
for epoch in range(args.max_epoch):
st = time.time()
train(args, train_loader, model_MT, optimizer_MT, criterion, logger)
test_ap = test(test_loader, model_MT, gt)
if test_ap > best_test_ap:
best_test_ap = test_ap
best_epoch = epoch
torch.save(model_MT.state_dict(), './ckpt/' + args.model_name + '_best.pkl')
logger.info('Epoch {}/{}: AP:{:.4}\n'.format(epoch, args.max_epoch, test_ap))
logger.info('Best Performance in Epoch {}: AP:{:.4}\n'.format(best_epoch, best_test_ap))