forked from ThomasKaiser/sbc-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
4ju5.txt
1268 lines (1093 loc) · 63 KB
/
4ju5.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
sbc-bench v0.9.9 SolidRun LX2160A Clearfog CX (Sat, 24 Dec 2022 20:02:39 +0000)
Distributor ID: Ubuntu
Description: Ubuntu 20.04.5 LTS
Release: 20.04
Codename: focal
/usr/bin/gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Uptime: 20:02:39 up 1 day, 8:43, 1 user, load average: 0.65, 0.19, 0.06, 0°C, 159816138
Linux 5.10.35-00045-g8510b2d4996d (nxp2) 12/24/22 _aarch64_ (16 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
0.01 0.00 0.33 0.00 0.00 99.67
Device tps kB_read/s kB_wrtn/s kB_dscd/s kB_read kB_wrtn kB_dscd
mmcblk1 0.24 1.49 8.61 0.00 175730 1014608 0
total used free shared buff/cache available
Mem: 5.7Gi 2.3Gi 3.3Gi 0.0Ki 112Mi 3.3Gi
Swap: 0B 0B 0B
##########################################################################
Checking cpufreq OPP for cpu0-cpu1 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.510/1998.510/1998.510)
Cpufreq OPP: 1000 Measured: 998 (998.631/998.537/998.372)
Checking cpufreq OPP for cpu2-cpu3 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.510/1998.462)
Cpufreq OPP: 1000 Measured: 998 (998.678/998.631/998.608)
Checking cpufreq OPP for cpu4-cpu5 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.559/1998.559)
Cpufreq OPP: 1000 Measured: 998 (998.608/998.608/998.560)
Checking cpufreq OPP for cpu6-cpu7 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.704/1998.607/1998.607)
Cpufreq OPP: 1000 Measured: 998 (998.678/998.631/998.631)
Checking cpufreq OPP for cpu8-cpu15 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.704/1998.559/1998.559)
Cpufreq OPP: 1000 Measured: 998 (998.631/998.608/998.560)
Cpufreq OPP: 900 Measured: 898 (898.747/898.613/898.575)
##########################################################################
Hardware sensors:
cluster4_hsio3-virtual-0
temp1: +49.9 C (crit = +95.0 C)
dce_qbman_hsio2-virtual-0
temp1: +48.9 C (crit = +95.0 C)
ddr_cluster5-virtual-0
temp1: +49.9 C (crit = +95.0 C)
ltc3882-i2c-5-5c
vin: 11.78 V (min = +6.30 V, crit max = +15.50 V)
(highest = +12.02 V)
vout1: 824.00 mV (crit min = +0.77 V, min = +0.77 V)
(max = +0.89 V, crit max = +0.91 V)
(highest = +0.82 V)
vout2: 824.00 mV (crit min = +0.77 V, min = +0.77 V)
(max = +0.89 V, crit max = +0.91 V)
(highest = +0.82 V)
temp1: +43.3 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +44.6 C)
temp2: +45.9 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +47.4 C)
temp3: +46.6 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +48.0 C)
pout1: 6.69 W
pout2: 6.73 W
iout1: 7.89 A (max = +50.00 A, crit max = +50.00 A)
(highest = +16.38 A)
iout2: 7.97 A (max = +50.00 A, crit max = +50.00 A)
(highest = +16.38 A)
sa56004-i2c-6-48
(crit = +85.0 C, hyst = +75.0 C)
(crit = +85.0 C, hyst = +75.0 C)
cluster2_3-virtual-0
temp1: +49.9 C (crit = +95.0 C)
ccn_dpaa_tbu-virtual-0
temp1: +48.9 C (crit = +95.0 C)
wriop-virtual-0
temp1: +49.9 C (crit = +95.0 C)
cluster6_7-virtual-0
temp1: +48.9 C (crit = +95.0 C)
amc6821-i2c-4-18
fan1: 6888 RPM (min = 91 RPM, max = 0 RPM, div = 2)
(crit = +80.0 C)
(crit = +105.0 C)
##########################################################################
Executing benchmark on cpu0 (Cortex-A72):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 4405.8 MB/s (0.2%)
C copy backwards (32 byte blocks) : 4405.1 MB/s
C copy backwards (64 byte blocks) : 4405.6 MB/s
C copy : 4440.5 MB/s
C copy prefetched (32 bytes step) : 4453.8 MB/s
C copy prefetched (64 bytes step) : 4453.9 MB/s
C 2-pass copy : 4320.4 MB/s
C 2-pass copy prefetched (32 bytes step) : 4367.6 MB/s
C 2-pass copy prefetched (64 bytes step) : 4385.3 MB/s
C fill : 12458.3 MB/s (0.7%)
C fill (shuffle within 16 byte blocks) : 12467.6 MB/s (0.2%)
C fill (shuffle within 32 byte blocks) : 12468.8 MB/s
C fill (shuffle within 64 byte blocks) : 12470.9 MB/s
---
standard memcpy : 4437.5 MB/s
standard memset : 12455.4 MB/s (0.6%)
---
NEON LDP/STP copy : 4439.7 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 4417.4 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 4418.6 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 4453.9 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4454.0 MB/s
NEON LD1/ST1 copy : 4438.2 MB/s
NEON STP fill : 12456.6 MB/s (0.7%)
NEON STNP fill : 12447.3 MB/s
ARM LDP/STP copy : 4439.8 MB/s
ARM STP fill : 12446.0 MB/s (0.6%)
ARM STNP fill : 12442.7 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 7.9 ns / 10.3 ns
524288 : 9.3 ns / 12.1 ns
1048576 : 11.2 ns / 15.2 ns
2097152 : 27.0 ns / 37.8 ns
4194304 : 35.1 ns / 45.3 ns
8388608 : 50.4 ns / 65.9 ns
16777216 : 97.3 ns / 132.8 ns
33554432 : 126.8 ns / 160.3 ns
67108864 : 146.6 ns / 178.1 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 6.2 ns / 8.1 ns
524288 : 6.6 ns / 8.3 ns
1048576 : 7.9 ns / 10.3 ns
2097152 : 23.6 ns / 33.9 ns
4194304 : 31.8 ns / 41.4 ns
8388608 : 36.4 ns / 45.1 ns
16777216 : 84.9 ns / 114.4 ns
33554432 : 112.3 ns / 139.0 ns
67108864 : 128.3 ns / 147.8 ns
Executing benchmark on cpu2 (Cortex-A72):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 4268.9 MB/s
C copy backwards (32 byte blocks) : 4267.6 MB/s
C copy backwards (64 byte blocks) : 4268.1 MB/s
C copy : 4307.7 MB/s
C copy prefetched (32 bytes step) : 4317.0 MB/s
C copy prefetched (64 bytes step) : 4316.9 MB/s
C 2-pass copy : 4203.2 MB/s
C 2-pass copy prefetched (32 bytes step) : 4258.4 MB/s
C 2-pass copy prefetched (64 bytes step) : 4267.8 MB/s
C fill : 12476.0 MB/s (0.7%)
C fill (shuffle within 16 byte blocks) : 12485.4 MB/s
C fill (shuffle within 32 byte blocks) : 12493.2 MB/s
C fill (shuffle within 64 byte blocks) : 12496.7 MB/s
---
standard memcpy : 4304.4 MB/s
standard memset : 12485.8 MB/s (0.7%)
---
NEON LDP/STP copy : 4307.3 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 4299.8 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 4300.6 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 4316.4 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4316.5 MB/s
NEON LD1/ST1 copy : 4307.3 MB/s
NEON STP fill : 12495.7 MB/s (0.7%)
NEON STNP fill : 12481.6 MB/s
ARM LDP/STP copy : 4307.9 MB/s
ARM STP fill : 12500.5 MB/s (0.7%)
ARM STNP fill : 12479.1 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 7.9 ns / 10.3 ns
524288 : 9.2 ns / 12.1 ns
1048576 : 11.1 ns / 15.0 ns
2097152 : 27.9 ns / 39.2 ns
4194304 : 36.3 ns / 47.0 ns
8388608 : 52.3 ns / 68.7 ns
16777216 : 98.9 ns / 134.7 ns
33554432 : 128.8 ns / 162.8 ns
67108864 : 148.6 ns / 180.6 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 6.2 ns / 8.1 ns
524288 : 6.6 ns / 8.3 ns
1048576 : 8.0 ns / 10.5 ns
2097152 : 24.7 ns / 35.1 ns
4194304 : 33.4 ns / 42.8 ns
8388608 : 37.9 ns / 46.5 ns
16777216 : 86.3 ns / 117.1 ns
33554432 : 114.6 ns / 142.4 ns
67108864 : 130.8 ns / 152.3 ns
Executing benchmark on cpu4 (Cortex-A72):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 4319.4 MB/s
C copy backwards (32 byte blocks) : 4318.8 MB/s
C copy backwards (64 byte blocks) : 4318.9 MB/s
C copy : 4351.4 MB/s
C copy prefetched (32 bytes step) : 4363.1 MB/s
C copy prefetched (64 bytes step) : 4363.0 MB/s
C 2-pass copy : 4228.9 MB/s
C 2-pass copy prefetched (32 bytes step) : 4285.5 MB/s
C 2-pass copy prefetched (64 bytes step) : 4297.7 MB/s
C fill : 12489.8 MB/s (0.7%)
C fill (shuffle within 16 byte blocks) : 12501.9 MB/s
C fill (shuffle within 32 byte blocks) : 12506.8 MB/s
C fill (shuffle within 64 byte blocks) : 12505.9 MB/s
---
standard memcpy : 4348.1 MB/s
standard memset : 12476.5 MB/s (0.7%)
---
NEON LDP/STP copy : 4350.8 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 4337.7 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 4338.2 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 4362.9 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4363.0 MB/s
NEON LD1/ST1 copy : 4350.7 MB/s
NEON STP fill : 12492.7 MB/s (0.7%)
NEON STNP fill : 12484.7 MB/s
ARM LDP/STP copy : 4351.7 MB/s
ARM STP fill : 12476.9 MB/s (0.7%)
ARM STNP fill : 12464.9 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 7.9 ns / 10.3 ns
524288 : 9.3 ns / 12.1 ns
1048576 : 11.5 ns / 15.8 ns
2097152 : 27.6 ns / 38.7 ns
4194304 : 36.4 ns / 46.5 ns
8388608 : 52.3 ns / 66.0 ns
16777216 : 98.8 ns / 134.1 ns
33554432 : 127.9 ns / 162.3 ns
67108864 : 147.8 ns / 180.4 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 6.2 ns / 8.1 ns
524288 : 6.6 ns / 8.3 ns
1048576 : 7.9 ns / 10.4 ns
2097152 : 24.4 ns / 34.8 ns
4194304 : 32.5 ns / 42.4 ns
8388608 : 39.3 ns / 46.0 ns
16777216 : 85.6 ns / 116.3 ns
33554432 : 113.6 ns / 141.7 ns
67108864 : 129.8 ns / 151.7 ns
Executing benchmark on cpu6 (Cortex-A72):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 4365.2 MB/s
C copy backwards (32 byte blocks) : 4363.7 MB/s
C copy backwards (64 byte blocks) : 4364.1 MB/s
C copy : 4403.3 MB/s
C copy prefetched (32 bytes step) : 4416.5 MB/s
C copy prefetched (64 bytes step) : 4416.2 MB/s
C 2-pass copy : 4284.5 MB/s
C 2-pass copy prefetched (32 bytes step) : 4333.8 MB/s
C 2-pass copy prefetched (64 bytes step) : 4350.6 MB/s
C fill : 12496.2 MB/s (0.7%)
C fill (shuffle within 16 byte blocks) : 12529.1 MB/s (0.1%)
C fill (shuffle within 32 byte blocks) : 12524.5 MB/s
C fill (shuffle within 64 byte blocks) : 12532.3 MB/s
---
standard memcpy : 4399.1 MB/s
standard memset : 12504.9 MB/s (0.7%)
---
NEON LDP/STP copy : 4402.5 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 4380.2 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 4381.1 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 4416.1 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4416.6 MB/s
NEON LD1/ST1 copy : 4402.4 MB/s
NEON STP fill : 12500.7 MB/s (0.6%)
NEON STNP fill : 12484.8 MB/s
ARM LDP/STP copy : 4402.9 MB/s
ARM STP fill : 12511.7 MB/s (0.7%)
ARM STNP fill : 12496.6 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 7.9 ns / 10.3 ns
524288 : 9.3 ns / 12.1 ns
1048576 : 12.8 ns / 18.1 ns
2097152 : 27.1 ns / 38.0 ns
4194304 : 35.7 ns / 45.6 ns
8388608 : 51.2 ns / 67.6 ns
16777216 : 97.4 ns / 133.0 ns
33554432 : 127.1 ns / 161.0 ns
67108864 : 146.8 ns / 178.5 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 6.2 ns / 8.1 ns
524288 : 6.6 ns / 8.3 ns
1048576 : 7.9 ns / 10.3 ns
2097152 : 23.8 ns / 34.0 ns
4194304 : 32.1 ns / 41.5 ns
8388608 : 36.6 ns / 45.2 ns
16777216 : 85.4 ns / 115.3 ns
33554432 : 112.8 ns / 140.3 ns
67108864 : 129.0 ns / 150.0 ns
Executing benchmark on cpu8 (Cortex-A72):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 4428.1 MB/s
C copy backwards (32 byte blocks) : 4425.9 MB/s
C copy backwards (64 byte blocks) : 4426.5 MB/s
C copy : 4463.8 MB/s
C copy prefetched (32 bytes step) : 4477.9 MB/s
C copy prefetched (64 bytes step) : 4477.6 MB/s
C 2-pass copy : 4339.0 MB/s
C 2-pass copy prefetched (32 bytes step) : 4380.7 MB/s
C 2-pass copy prefetched (64 bytes step) : 4403.0 MB/s
C fill : 12448.3 MB/s (0.6%)
C fill (shuffle within 16 byte blocks) : 12448.9 MB/s
C fill (shuffle within 32 byte blocks) : 12469.8 MB/s
C fill (shuffle within 64 byte blocks) : 12476.1 MB/s
---
standard memcpy : 4460.1 MB/s
standard memset : 12469.1 MB/s (0.7%)
---
NEON LDP/STP copy : 4462.6 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 4429.6 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 4430.6 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 4477.7 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4477.9 MB/s
NEON LD1/ST1 copy : 4461.7 MB/s
NEON STP fill : 12471.5 MB/s (0.7%)
NEON STNP fill : 12450.2 MB/s
ARM LDP/STP copy : 4463.1 MB/s
ARM STP fill : 12460.3 MB/s (0.7%)
ARM STNP fill : 12441.7 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 7.9 ns / 10.3 ns
524288 : 9.3 ns / 12.1 ns
1048576 : 10.9 ns / 14.9 ns
2097152 : 26.5 ns / 37.1 ns
4194304 : 34.3 ns / 44.4 ns
8388608 : 50.0 ns / 63.1 ns
16777216 : 96.5 ns / 131.7 ns
33554432 : 126.0 ns / 159.3 ns
67108864 : 146.0 ns / 177.6 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 3.5 ns / 5.5 ns
131072 : 5.3 ns / 7.4 ns
262144 : 6.2 ns / 8.1 ns
524288 : 6.6 ns / 8.3 ns
1048576 : 7.9 ns / 10.3 ns
2097152 : 23.2 ns / 33.1 ns
4194304 : 31.2 ns / 40.5 ns
8388608 : 35.6 ns / 44.1 ns
16777216 : 84.4 ns / 114.2 ns
33554432 : 111.8 ns / 139.0 ns
67108864 : 127.8 ns / 148.4 ns
##########################################################################
Executing ramlat on cpu0 (Cortex-A72), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 2.502 2.503 2.502 2.502 2.002 2.002 2.002 4.003
8k: 2.502 2.502 2.503 2.502 2.002 2.002 2.002 4.003
16k: 2.502 2.502 2.502 2.502 2.002 2.002 2.368 4.003
32k: 2.505 2.503 2.503 2.503 2.003 2.002 2.477 4.005
64k: 10.63 9.507 10.75 9.508 10.25 9.731 16.78 33.05
128k: 10.96 9.509 10.96 9.509 10.46 9.412 16.85 34.01
256k: 10.99 9.510 10.99 9.509 10.49 9.427 17.11 33.89
512k: 11.01 9.509 11.00 9.509 10.50 9.407 16.96 33.72
1024k: 16.54 15.34 18.91 15.33 16.91 17.74 25.89 41.53
2048k: 40.91 38.70 39.98 38.65 39.32 40.15 53.17 71.03
4096k: 42.73 42.69 42.99 42.55 42.52 43.01 56.85 78.12
8192k: 49.61 44.56 45.60 44.44 44.62 45.64 59.11 79.05
16384k: 140.9 119.5 133.6 119.2 134.4 120.7 123.7 189.8
Executing ramlat on cpu2 (Cortex-A72), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 2.502 2.502 2.502 2.502 2.002 2.001 2.025 4.003
8k: 2.502 2.502 2.502 2.502 2.002 2.002 2.032 4.003
16k: 2.502 2.502 2.502 2.502 2.002 2.002 2.490 4.003
32k: 2.503 2.503 2.503 2.503 2.003 2.003 2.552 4.005
64k: 10.69 9.506 10.78 9.508 10.26 9.727 16.77 33.05
128k: 10.96 9.509 10.96 9.508 10.46 9.452 16.85 34.01
256k: 10.99 9.508 10.99 9.509 10.49 9.393 17.11 33.88
512k: 11.01 9.508 11.00 9.508 10.50 9.382 16.96 33.71
1024k: 17.27 16.02 16.68 15.78 15.97 16.83 25.67 41.79
2048k: 42.97 40.27 41.27 40.31 41.25 41.38 53.42 71.41
4096k: 44.87 44.49 45.08 44.57 44.46 44.37 57.20 78.75
8192k: 51.84 46.37 46.68 46.20 45.99 46.73 59.05 79.69
16384k: 142.4 123.0 135.8 120.8 135.3 122.1 125.7 192.8
Executing ramlat on cpu4 (Cortex-A72), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 2.503 2.502 2.502 2.502 2.002 2.002 2.002 4.003
8k: 2.502 2.502 2.502 2.502 2.002 2.002 2.016 4.003
16k: 2.502 2.502 2.502 2.502 2.002 2.002 2.558 4.003
32k: 2.504 2.503 2.503 2.503 2.003 2.003 2.428 4.005
64k: 10.59 9.511 10.72 9.506 10.24 9.718 16.78 33.11
128k: 10.96 9.509 10.96 9.509 10.46 9.406 16.85 33.99
256k: 10.99 9.508 10.99 9.508 10.49 9.365 17.11 33.89
512k: 11.01 9.509 11.00 9.509 10.57 9.359 16.97 33.72
1024k: 17.17 15.51 15.60 15.82 16.10 16.82 25.54 41.62
2048k: 42.01 39.68 41.55 39.87 40.52 40.89 53.37 71.41
4096k: 43.37 43.96 44.64 43.72 43.92 43.93 57.06 78.63
8192k: 50.71 46.08 46.30 45.44 45.54 46.85 59.12 79.59
16384k: 142.1 120.1 133.9 120.1 133.3 121.3 124.6 191.6
Executing ramlat on cpu6 (Cortex-A72), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 2.502 2.502 2.502 2.502 2.002 2.002 2.002 4.003
8k: 2.502 2.502 2.502 2.502 2.002 2.002 2.018 4.003
16k: 2.502 2.502 2.502 2.502 2.002 2.002 2.541 4.003
32k: 2.503 2.503 2.503 2.503 2.003 2.002 2.560 4.005
64k: 10.55 9.506 10.78 9.507 10.21 9.723 16.78 33.05
128k: 10.97 9.508 10.96 9.508 10.46 9.398 16.85 34.01
256k: 10.99 9.508 10.99 9.508 10.49 9.400 17.11 33.88
512k: 11.01 9.509 11.00 9.510 10.50 9.343 16.97 33.72
1024k: 19.78 15.19 18.18 15.14 16.76 16.73 25.51 41.68
2048k: 40.11 39.20 39.87 39.10 39.76 40.24 53.15 70.83
4096k: 43.29 43.20 43.57 42.96 43.25 43.11 56.76 78.00
8192k: 49.29 47.93 45.47 44.65 44.44 45.22 58.51 78.99
16384k: 141.5 119.2 133.8 119.0 132.7 120.4 123.8 189.6
Executing ramlat on cpu8 (Cortex-A72), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 2.502 2.502 2.502 2.502 2.002 2.001 2.007 4.003
8k: 2.502 2.502 2.502 2.502 2.002 2.002 2.044 4.003
16k: 2.502 2.502 2.502 2.502 2.002 2.002 2.447 4.003
32k: 2.504 2.503 2.503 2.503 2.003 2.002 2.556 4.005
64k: 10.57 9.507 10.76 9.506 10.22 9.729 16.78 33.05
128k: 10.96 9.509 10.96 9.509 10.46 9.403 16.85 34.01
256k: 10.99 9.508 10.99 9.513 10.49 9.417 17.11 33.89
512k: 11.01 9.510 11.00 9.509 10.50 9.398 16.96 33.72
1024k: 17.07 15.26 17.54 15.59 16.68 16.42 25.38 41.35
2048k: 41.80 39.72 40.93 39.84 40.90 39.35 52.89 70.51
4096k: 42.07 41.89 42.52 41.90 41.92 42.14 56.51 77.65
8192k: 48.33 43.78 44.64 43.75 43.82 44.50 58.43 78.55
16384k: 138.6 118.7 133.5 118.5 135.2 119.6 122.9 190.1
##########################################################################
Executing benchmark on each cluster individually
OpenSSL 1.1.1f, built on 31 Mar 2020
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes
aes-128-cbc 380607.41k 879410.67k 1281737.47k 1424167.59k 1500684.29k 1506394.11k (Cortex-A72)
aes-128-cbc 380625.68k 879463.00k 1281736.19k 1419133.61k 1500326.57k 1505563.99k (Cortex-A72)
aes-128-cbc 380424.85k 879466.88k 1281740.20k 1425055.74k 1498704.55k 1509097.47k (Cortex-A72)
aes-128-cbc 380621.55k 879496.06k 1281717.67k 1425016.15k 1500815.36k 1507049.47k (Cortex-A72)
aes-128-cbc 380637.00k 879472.28k 1281765.03k 1422315.52k 1500443.99k 1506328.58k (Cortex-A72)
aes-192-cbc 363321.75k 803662.81k 1089067.69k 1263814.31k 1320370.18k 1324673.71k (Cortex-A72)
aes-192-cbc 363329.40k 803659.11k 1093611.26k 1263843.33k 1321863.85k 1323854.51k (Cortex-A72)
aes-192-cbc 363335.22k 803703.21k 1095510.53k 1260799.32k 1323128.15k 1323248.30k (Cortex-A72)
aes-192-cbc 363320.15k 803715.84k 1089667.93k 1262219.95k 1323095.38k 1326525.10k (Cortex-A72)
aes-192-cbc 363340.48k 803678.95k 1095531.35k 1260773.38k 1318461.44k 1323122.69k (Cortex-A72)
aes-256-cbc 351335.88k 735015.87k 1003116.97k 1091992.23k 1133349.55k 1136689.15k (Cortex-A72)
aes-256-cbc 270903.66k 627263.21k 945007.36k 1073734.31k 1129373.70k 1135531.35k (Cortex-A72)
aes-256-cbc 351354.33k 735027.07k 1003128.41k 1091996.67k 1135457.62k 1136465.24k (Cortex-A72)
aes-256-cbc 351265.34k 734982.21k 1001193.81k 1091912.36k 1135452.16k 1136022.87k (Cortex-A72)
aes-256-cbc 268840.02k 625723.52k 945171.20k 1069208.23k 1131307.01k 1134144.17k (Cortex-A72)
##########################################################################
Executing benchmark single-threaded on cpu0 (Cortex-A72)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2289 100 2232 2227 | 25873 100 2211 2209
23: 2160 100 2207 2201 | 25593 100 2218 2215
24: 2086 100 2249 2243 | 25269 100 2221 2218
25: 2036 100 2331 2325 | 24947 100 2223 2220
---------------------------------- | ------------------------------
Avr: 100 2255 2249 | 100 2219 2216
Tot: 100 2237 2233
Executing benchmark single-threaded on cpu2 (Cortex-A72)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2284 100 2228 2222 | 25829 100 2207 2205
23: 2149 100 2195 2190 | 25581 100 2217 2214
24: 2070 100 2232 2226 | 25277 100 2222 2219
25: 2028 100 2322 2316 | 24879 100 2217 2214
---------------------------------- | ------------------------------
Avr: 100 2244 2239 | 100 2216 2213
Tot: 100 2230 2226
Executing benchmark single-threaded on cpu4 (Cortex-A72)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: 64000000 - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2291 100 2234 2229 | 25679 100 2195 2193
23: 2152 100 2199 2194 | 25391 100 2200 2198
24: 2071 100 2234 2228 | 25067 100 2204 2201
25: 2024 100 2317 2311 | 24774 100 2208 2205
---------------------------------- | ------------------------------
Avr: 100 2246 2240 | 100 2202 2199
Tot: 100 2224 2220
Executing benchmark single-threaded on cpu6 (Cortex-A72)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2304 100 2247 2242 | 25871 100 2211 2209
23: 2147 100 2193 2188 | 25583 100 2217 2214
24: 2071 100 2233 2228 | 25314 100 2225 2222
25: 2019 100 2311 2305 | 24949 100 2223 2221
---------------------------------- | ------------------------------
Avr: 100 2246 2241 | 100 2219 2217
Tot: 100 2233 2229
Executing benchmark single-threaded on cpu8 (Cortex-A72)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2307 100 2250 2245 | 25867 100 2211 2209
23: 2165 100 2212 2206 | 25598 100 2218 2216
24: 2087 100 2250 2245 | 25307 100 2224 2222
25: 2037 100 2332 2327 | 24927 100 2221 2219
---------------------------------- | ------------------------------
Avr: 100 2261 2255 | 100 2219 2216
Tot: 100 2240 2236
##########################################################################
Executing benchmark 3 times multi-threaded on CPUs 0-15
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - 1024000000 2048000000
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 3530 MB, # Benchmark threads: 16
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 17420 1546 1096 16947 | 401744 1587 2159 34265
23: 15995 1547 1054 16297 | 393246 1585 2147 34024
24: 15263 1532 1072 16411 | 386037 1585 2138 33884
25: 14598 1525 1093 16667 | 379028 1586 2127 33732
---------------------------------- | ------------------------------
Avr: 1537 1079 16581 | 1586 2143 33976
Tot: 1561 1611 25279
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 3530 MB, # Benchmark threads: 16
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 17495 1561 1091 17019 | 399196 1579 2157 34047
23: 15881 1541 1050 16182 | 394633 1588 2151 34144
24: 15260 1534 1069 16408 | 387041 1589 2139 33973
25: 14545 1522 1091 16607 | 379839 1589 2128 33804
---------------------------------- | ------------------------------
Avr: 1540 1075 16554 | 1586 2144 33992
Tot: 1563 1609 25273
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,16 CPUs LE)
LE
CPU Freq: - - - - - - - - 2048000000
RAM size: 5850 MB, # CPU hardware threads: 16
RAM usage: 3530 MB, # Benchmark threads: 16
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 17460 1550 1096 16985 | 399757 1581 2156 34095
23: 15820 1529 1054 16119 | 393111 1583 2148 34012
24: 15154 1538 1059 16294 | 385652 1582 2139 33851
25: 14615 1525 1094 16688 | 380356 1590 2129 33850
---------------------------------- | ------------------------------
Avr: 1536 1076 16522 | 1584 2143 33952
Tot: 1560 1609 25237
Compression: 16581,16554,16522
Decompression: 33976,33992,33952
Total: 25279,25273,25237
##########################################################################
Testing maximum cpufreq again, still under full load. System health now:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
20:43:29: 2000/2000MHz 15.77 97% 1% 94% 0% 0% 0% 0°C
Checking cpufreq OPP for cpu0-cpu1 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.559/1998.510)
Checking cpufreq OPP for cpu2-cpu3 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.559/1998.510)
Checking cpufreq OPP for cpu4-cpu5 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.559/1998.462)
Checking cpufreq OPP for cpu6-cpu7 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.655/1998.607/1998.559)
Checking cpufreq OPP for cpu8-cpu15 (Cortex-A72):
Cpufreq OPP: 2000 Measured: 1998 (1998.607/1998.559/1998.559)
##########################################################################
Hardware sensors:
cluster4_hsio3-virtual-0
temp1: +50.9 C (crit = +95.0 C)
dce_qbman_hsio2-virtual-0
temp1: +50.9 C (crit = +95.0 C)
ddr_cluster5-virtual-0
temp1: +51.9 C (crit = +95.0 C)
ltc3882-i2c-5-5c
vin: 11.80 V (min = +6.30 V, crit max = +15.50 V)
(highest = +12.02 V)
vout1: 823.00 mV (crit min = +0.77 V, min = +0.77 V)
(max = +0.89 V, crit max = +0.91 V)
(highest = +0.82 V)
vout2: 824.00 mV (crit min = +0.77 V, min = +0.77 V)
(max = +0.89 V, crit max = +0.91 V)
(highest = +0.83 V)
temp1: +44.1 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +44.6 C)
temp2: +47.2 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +48.2 C)
temp3: +47.2 C (high = +105.0 C, crit low = -40.0 C)
(crit = +110.0 C, highest = +48.0 C)
pout1: 6.67 W
pout2: 7.16 W
iout1: 8.05 A (max = +50.00 A, crit max = +50.00 A)
(highest = +19.50 A)
iout2: 7.99 A (max = +50.00 A, crit max = +50.00 A)
(highest = +19.09 A)
sa56004-i2c-6-48
(crit = +85.0 C, hyst = +75.0 C)