-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPortfolioFactory.py
149 lines (120 loc) · 6.25 KB
/
PortfolioFactory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import Portfolio
import numpy as np
class PortfolioFactory:
# The means, standard deviations, and correlation matrix are all in log terms.
def __init__(self):
PortfolioFactory.log_normal_means = np.array([0.06, 0.059, 0.07, 0.056, 0.019, 0.052, 0.015])
PortfolioFactory.log_normal_standard_deviations = np.array([[0.19, 0.202, 0.268, 0.207, 0.038, 0.07, 0.058]])
PortfolioFactory.correlation_matrix = np.array([[1.000, 0.740, 0.670, 0.740, 0.130, 0.470, 0.020],
[0.740, 1.000, 0.700, 0.780, 0.090, 0.460, 0.000],
[0.670, 0.700, 1.000, 0.660, 0.070, 0.450, -0.03],
[0.740, 0.780, 0.660, 1.000, 0.100, 0.370, -0.03],
[0.130, 0.090, 0.070, 0.100, 1.000, 0.100, 0.100],
[0.470, 0.460, 0.450, 0.370, 0.100, 1.000, 0.550],
[0.020, 0.000, -0.03, -0.03, 0.100, 0.550, 1.000]])
# Transforming log correlation matrix to log covariance matrix.
standard_deviations_matrix = np.matmul(
PortfolioFactory.log_normal_standard_deviations.T,
PortfolioFactory.log_normal_standard_deviations)
PortfolioFactory.log_normal_covariance_matrix = np.multiply(
PortfolioFactory.correlation_matrix,
standard_deviations_matrix)
# PortfolioFactory.log_normal_covariance_matrix = [round(element, 3) for element in PortfolioFactory.log_normal_covariance_matrix]
# std_diag = np.diag(PortfolioFactory.log_normal_standard_deviations)
# PortfolioFactory.log_normal_covariance_matrix = np.dot(std_diag, PortfolioFactory.correlation_matrix, std_diag)
PortfolioFactory.transform_lognormal_covariance_to_normal()
@staticmethod
def get_available_portfolios():
weights1 = [0.3, 0.3, 0.1, 0.1, 0.1, 0.1, 0]
fees1 = 0.2
weights2 = [0.25, 0.25, 0.1, 0.1, 0.2, 0.1, 0]
fees2 = 0.18
weights3 = [0.25, 0.21, 0.08, 0.08, 0.3, 0.08, 0]
fees3 = 0.16
weights4 = [0.23, 0.19, 0.06, 0.06, 0.4, 0.06, 0]
fees4 = 0.14
weights5 = [0.21, 0.15, 0.04, 0.05, 0.45, 0.05, 0.05]
fees5 = 0.12
weights6 = [0.16, 0.12, 0.04, 0.04, 0.5, 0.04, 0.1]
fees6 = 0.1
weights7 = [0.13, 0.09, 0.02, 0.03, 0.55, 0.03, 0.15]
fees7 = 0.08
weights8 = [0.08, 0.06, 0.01, 0.02, 0.51, 0.02, 0.3]
fees8 = 0.06
# Move this into a loop.
portfolios = [
PortfolioFactory.create_portfolio(weights1, fees1),
PortfolioFactory.create_portfolio(weights2, fees2),
PortfolioFactory.create_portfolio(weights3, fees3),
PortfolioFactory.create_portfolio(weights4, fees4),
PortfolioFactory.create_portfolio(weights5, fees5),
PortfolioFactory.create_portfolio(weights6, fees6),
PortfolioFactory.create_portfolio(weights7, fees7),
PortfolioFactory.create_portfolio(weights8, fees8),
]
return portfolios
@staticmethod
def create_portfolio(weights, fees):
return Portfolio.Portfolio(
weights=weights,
means=PortfolioFactory.normal_means,
covariance_matrix=PortfolioFactory.normal_covariance_matrix,
fees=fees)
@staticmethod
def transform_lognormal_covariance_to_normal():
rows = PortfolioFactory.log_normal_covariance_matrix.shape[0]
cols = PortfolioFactory.log_normal_covariance_matrix.shape[1]
PortfolioFactory.normal_covariance_matrix = np.zeros((rows, cols))
ones = np.ones((1, rows))
log_means = PortfolioFactory.log_normal_means
log_std = PortfolioFactory.log_normal_standard_deviations
normal_means = np.log(ones + log_means) - np.multiply(log_std, log_std) / (2 * ones)
PortfolioFactory.normal_means = [round(element, 3) for element in normal_means[0]]
for i in range(0, rows):
for j in range(0, cols):
PortfolioFactory.normal_covariance_matrix[i][j] =\
round(PortfolioFactory.transform_lognormal_covariance_entry_to_normal(i, j), 5) # Is 5 okay?
@staticmethod
def transform_lognormal_covariance_entry_to_normal(row, col):
mat = PortfolioFactory.log_normal_covariance_matrix
log_means = PortfolioFactory.log_normal_means
return (np.log(1 + ((mat[row][col]) / ((1 + log_means[row]) * (1 + log_means[col])))))
@staticmethod
def test_lognormal_to_normal_transformations():
PortfolioFactory.transform_lognormal_covariance_to_normal()
print(f"Log Normal Covariance Matrix:")
print(PortfolioFactory.log_normal_covariance_matrix)
print(f"Log Normal Means:")
print(PortfolioFactory.log_normal_means)
print(f"Normal Covariance Matrix:")
print(PortfolioFactory.normal_covariance_matrix)
print(f"Normal Means:")
print(PortfolioFactory.normal_means)
def test_single_sample(self):
portfolios = PortfolioFactory.get_available_portfolios()
count = len(portfolios)
for i in range(count):
print(f"Sampling from portfolio: {i + 1}, sample: {portfolios[i].sample_return()}")
i = i + 1
def test_portfolio_sampling(self):
portfolios = PortfolioFactory.get_available_portfolios()
count = len(portfolios)
samples = []
for j in range(count):
samples.append(0)
i = 0
simulation_number = 15000
for j in range(simulation_number):
for portfolio in portfolios:
samples[i % count] = samples[i % count] + portfolio.sample_return()
i = i + 1
print(f"For {simulation_number} number of samples:")
for sample in samples:
print(f"Sampling from portfolio: {i % count}, returns: {sample / simulation_number}")
i = i + 1
# Test code because I'm too lazy to create a test structure for the project.
# pf = PortfolioFactory()
# pf.test_lognormal_to_normal_transformations()
# pf.test_single_sample()
# print()
# pf.test_portfolio_sampling()