-
Notifications
You must be signed in to change notification settings - Fork 5
/
predict.py
285 lines (244 loc) · 8.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import pandas as pd
import numpy as np
import sys
from PIL import Image, ImageFilter, ImageOps
import glob
import re
import os
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
GaussianNBModel = GaussianNB()
KneighboursModel_5 = make_pipeline(
PCA(2100),
KNeighborsClassifier(n_neighbors=5)
)
KneighboursModel_15 = make_pipeline(
PCA(2100),
KNeighborsClassifier(n_neighbors=15)
)
KneighboursModelWithScaler_5 = make_pipeline(
StandardScaler(),
PCA(2100),
KNeighborsClassifier(n_neighbors=5)
)
KneighboursModelWithScaler_15 = make_pipeline(
StandardScaler(),
PCA(2100),
KNeighborsClassifier(n_neighbors=15)
)
SVCModelRBF = SVC(kernel='rbf', C=5, gamma=5)
SVCModelLinear = SVC(kernel='linear', C=1e-2)
SVCModelWithScalerRBF = make_pipeline(
StandardScaler(),
PCA(2100),
SVC(kernel='rbf', C=5, gamma=5)
)
SVCModelWithScalerLinear = make_pipeline(
StandardScaler(),
PCA(2100),
SVC(kernel='linear', C=1e-2)
)
NeuralModel = MLPClassifier(solver='lbfgs',
hidden_layer_sizes=(5, 4),
activation='identity',
random_state=0
)
def SeqBug(input):
return np.array(list(input), dtype=np.float)
def LoadGreyImage(inPut):
data = Image.open(inPut) # .convert("L")
return data
#
# def LoadImage(inPut):
# data = Image.open(inPut) # .convert("L")
# data.load()
# imageData = np.asarray(data, dtype="float")
# return imageData
def LoadImage(inPut):
data = Image.open(inPut) # .convert("L")
temp = data.resize((64, 48), Image.ANTIALIAS)
temp.load()
imageData = np.asarray(temp, dtype="float")
return imageData / 255
def imageDate(i):
Reg = r"katkam-(\d\d\d\d)(\d\d)(\d\d)(\d\d)"
m = re.search(Reg, i)
if m:
time = '' + m.group(1) + '-' + m.group(2) + '-' + m.group(3) + ' ' + m.group(4) + ':00'
return time
else:
return None
def getGreyValue(img):
pixel = []
for x in range(0, 64):
for y in range(0, 48):
pixel_value = img.getpixel((x, y))
pixel.append(pixel_value)
avg = sum(pixel) / len(pixel)
cp = []
for px in pixel:
if px > avg:
cp.append(1)
else:
cp.append(0)
return cp
def classfiy_aHash(image1, size=(64, 48)):
image1 = image1.resize(size).convert('L').filter(ImageFilter.BLUR)
image1 = ImageOps.equalize(image1)
code1 = getGreyValue(image1)
return code1
def imageDateBack(i):
Reg = r"(\d\d\d\d)-(\d\d)-(\d\d)\s(\d\d)\:(\d\d)"
m = re.search(Reg, i)
if m:
time = '' + m.group(1) + m.group(2) + m.group(3) + m.group(4) + m.group(5) + '00'
return time
else:
return None
def LoadWeatherDataFrame(path):
df = pd.read_csv(path, skiprows=16, error_bad_lines=False)
return df
def renaming(a, b):
i = 0
for filename in glob.glob('katkam-scaled/*.jpg'):
# print(filename)
for s in a:
if s in filename:
newName = b[i] + str(i) + '.jpg'
os.rename(filename, newName)
i += 1
else:
continue
def PrintPredict(Xtrain, ytrain, image):
models = [GaussianNBModel,
KneighboursModel_5,
KneighboursModel_15,
KneighboursModelWithScaler_5,
KneighboursModelWithScaler_15,
SVCModelRBF,
SVCModelLinear,
SVCModelWithScalerRBF,
SVCModelWithScalerLinear,
NeuralModel
]
# fit each model
for i, m in enumerate(models):
m.fit(Xtrain, ytrain)
modelName = [' GaussianNBModel',
' KneighboursModel_5',
' KneighboursModel_15',
' KneighboursModelWithScaler_5',
' KneighboursModelWithScaler_15',
' SVCModelRBF',
' SVCModelLinear',
' SVCModelWithScalerRBF',
' SVCModelWithScalerLinear',
' NeuralModel'
]
# print the score for each model
for i, m in enumerate(models):
result = m.predict(image)
print(modelName[i] + "'s score:" + result[0])
def ReLabel(input):
if 'Rain' and 'Fog' in input:
return 'Rain,Fog'
elif 'Rain' in input:
return 'Rain'
elif 'Clear' in input:
return 'Clear'
elif 'Cloudy' in input:
return 'Cloudy'
elif 'Snow' in input:
return 'Snow'
elif 'Fog' in input:
return 'Fog'
elif 'Drizzle' in input:
return 'Drizzle'
else:
return input
userInput = sys.argv[1]
# userInput = 'katkam-20160605160000.jpg'
print(' -------------------------------------------------------------------')
print('|This program take your input image to PREDICT the weather!(Relabel)|')
print(' -------------------------------------------------------------------')
AllGreyImageArray = []
AllColourImageArray = []
AllImageDateArray = []
for filename in glob.glob('katkam-scaled/*.jpg'):
AllImageDateArray.append(imageDate(filename))
AllGreyImageArray.append(classfiy_aHash(LoadGreyImage(filename)))
AllColourImageArray.append(LoadImage(filename))
WeatherDataFrame = pd.DataFrame()
frames = []
for fileName in glob.glob('yvr-weather/*.csv'):
df = LoadWeatherDataFrame(fileName)
frames.append(df)
DataFrameOfDate = pd.DataFrame({'ImageDate': AllImageDateArray, 'Grey': AllGreyImageArray})
AllCsvDataFrame = (pd.concat(frames, ignore_index=True)).dropna(subset=['Weather'])
AllCsvDataFrame['NewWeather'] = AllCsvDataFrame['Weather'].apply(ReLabel)
'''
Grey Image Prediction with Weather label
'''
# result.to_csv('lol.csv')
df1 = pd.DataFrame({'date': AllImageDateArray})
df2 = pd.DataFrame(AllGreyImageArray)
AppandedDF = pd.concat([df1, df2], axis=1, join='inner')
DateCleaned = pd.concat([AllCsvDataFrame.set_index('Date/Time'),
AppandedDF.set_index('date')],
axis=1, join='inner').reset_index()
X = DateCleaned.iloc[:, 26:].values
y = DateCleaned['NewWeather'].values
y_time = DateCleaned['Time'].values
X_train, X_test, y_train, y_test = train_test_split(X, y)
X_train_time, X_test_time, y_train_time, y_test_time = train_test_split(X, y_time)
'''
#this renaming function should be commended out when we are not dealing with deep learning.
DF = pd.DataFrame()
DF['date'] = DateCleaned['index']
DF['weather'] = DateCleaned['Weather']
DF['DateInString'] = DF['date'].apply(imageDateBack)
FileName = DF['DateInString'].values
Classifier = DF['weather'].values
renaming(FileName, Classifier)
'''
print('\nUsing GreyScale method to predict Weather:')
GreyImage = classfiy_aHash(LoadGreyImage(userInput))
GreyReshape = np.asarray(GreyImage).reshape(1, -1)
PrintPredict(SeqBug(X_train), y_train, GreyReshape)
print('\nUsing GreyScale method to predict Time:')
PrintPredict(SeqBug(X_train_time), y_train_time, GreyReshape)
''' Colour method preparation '''
df1Colour = pd.DataFrame({'date': AllImageDateArray})
ColourArray = np.asarray(AllColourImageArray)
df2Colour = pd.DataFrame(ColourArray.reshape(ColourArray.shape[0],
ColourArray.shape[1]
* ColourArray.shape[2]
* ColourArray.shape[3]))
AppandedDFColour = pd.concat([df1Colour, df2Colour], axis=1, join='inner')
DateCleanedColour = pd.concat([AllCsvDataFrame.set_index('Date/Time'),
AppandedDFColour.set_index('date')],
axis=1, join='inner').reset_index()
XColour = DateCleanedColour.iloc[:, 26:]
yColour = DateCleaned['NewWeather']
X_train_Colour, X_test_Colour, y_train_Colour, y_test_Colour = train_test_split(XColour, yColour)
print('\nUsing Colourful method to predict Weather:')
imageArray = LoadImage(userInput)
ColourReshape = imageArray.reshape(1, -1)
PrintPredict(X_train_Colour, y_train_Colour, ColourReshape)
'''
Grey Image prediction with Time
'''
print('\nUsing Full Colour method to predict Time:')
y_time = DateCleaned['Time'].values
X_train_time, X_test_time, y_train_time, y_test_time = train_test_split(XColour, y_time)
PrintPredict(X_train_time, y_train_time, ColourReshape)
print(' ---')
print('|EOF|')
print(' ---')