-
Notifications
You must be signed in to change notification settings - Fork 1
/
CNN.py
59 lines (45 loc) · 1.82 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout , Flatten
from keras.layers import Conv2D, MaxPooling2D
model = Sequential()
# first layer
model.add(Conv2D(128,(3,3), activation='relu', input_shape=(64,64,3)))
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2)))
# second layer
model.add(Conv2D(128,(3,3), activation='relu'))
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2)))
#flatten
model.add(Flatten())
#full connection
model.add(Dense(128,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
#compilation
model.compile(optimizer='adam', loss = 'binary_crossentropy', metrics=['accuracy'])
# data augmentation
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('/dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('/dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
model.fit_generator(training_set,
steps_per_epoch=8000,
epochs=50,
validation_data=test_set ,
validation_steps=2000)