Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
sronilsson authored Oct 11, 2023
1 parent c92acc8 commit 50192b5
Showing 1 changed file with 95 additions and 21 deletions.
116 changes: 95 additions & 21 deletions simba/mixins/timeseries_features_mixin.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
import numpy as np
from numba import njit, prange

import numpy as np

class TimeseriesFeatureMixin(object):

Expand All @@ -12,7 +11,7 @@ def __init__(self):
pass

@staticmethod
@njit("(float32[:],)")
@njit('(float32[:],)')
def hjort_parameters(data: np.ndarray):
"""
Jitted compute of Hjorth parameters for a given time series data. Hjorth parameters describe
Expand Down Expand Up @@ -53,7 +52,7 @@ def diff(x):
return activity, mobility, complexity

@staticmethod
@njit("(float32[:], boolean)")
@njit('(float32[:], boolean)')
def local_maxima_minima(data: np.ndarray, maxima: bool) -> np.ndarray:
"""
Jitted compute of the local maxima or minima defined as values which are higher or lower than immediately preceding and proceeding time-series neighbors, repectively.
Expand Down Expand Up @@ -99,7 +98,7 @@ def local_maxima_minima(data: np.ndarray, maxima: bool) -> np.ndarray:
return results[np.argwhere(results[:, 0].T != -1).flatten()]

@staticmethod
@njit("(float32[:], float64)")
@njit('(float32[:], float64)')
def crossings(data: np.ndarray, val: float) -> int:
"""
Jitted compute of the count in time-series where sequential values crosses a defined value.
Expand Down Expand Up @@ -132,10 +131,8 @@ def crossings(data: np.ndarray, val: float) -> int:
return cnt

@staticmethod
@njit("(float32[:], int64, int64, )", cache=True, fastmath=True)
def percentile_difference(
data: np.ndarray, upper_pct: int, lower_pct: int
) -> float:
@njit('(float32[:], int64, int64, )', cache=True, fastmath=True)
def percentile_difference(data: np.ndarray, upper_pct: int, lower_pct: int) -> float:
"""
Jitted compute of the difference between the ``upper`` and ``lower`` percentiles of the data as
a percentage of the median value.
Expand All @@ -159,13 +156,11 @@ def percentile_difference(
"""

upper_val, lower_val = np.percentile(data, upper_pct), np.percentile(
data, lower_pct
)
upper_val, lower_val = np.percentile(data, upper_pct), np.percentile(data, lower_pct)
return np.abs(upper_val - lower_val) / np.median(data)

@staticmethod
@njit("(float32[:], float64,)", cache=True, fastmath=True)
@njit('(float32[:], float64,)', cache=True, fastmath=True)
def percent_beyond_n_std(data: np.ndarray, n: float) -> float:
"""
Jitted compute of the ratio of values in time-series more than N standard deviations from the mean of the time-series.
Expand Down Expand Up @@ -193,7 +188,7 @@ def percent_beyond_n_std(data: np.ndarray, n: float) -> float:
return np.argwhere(np.abs(data) > target).shape[0] / data.shape[0]

@staticmethod
@njit("(float32[:], int64, int64, )", cache=True, fastmath=True)
@njit('(float32[:], int64, int64, )', cache=True, fastmath=True)
def percent_in_percentile_window(data: np.ndarray, upper_pct: int, lower_pct: int):
"""
Jitted compute of the ratio of values in time-series that fall between the ``upper`` and ``lower`` percentile.
Expand All @@ -217,10 +212,89 @@ def percent_in_percentile_window(data: np.ndarray, upper_pct: int, lower_pct: in
:align: center
"""

upper_val, lower_val = np.percentile(data, upper_pct), np.percentile(
data, lower_pct
)
return (
np.argwhere((data <= upper_val) & (data >= lower_val)).flatten().shape[0]
/ data.shape[0]
)
upper_val, lower_val = np.percentile(data, upper_pct), np.percentile(data, lower_pct)
return np.argwhere((data <= upper_val) & (data >= lower_val)).flatten().shape[0] / data.shape[0]

@staticmethod
@njit('(float32[:],)', fastmath=True, cache=True)
def petrosian_fractal_dimension(data: np.ndarray) -> float:
"""
Calculate the Petrosian Fractal Dimension (PFD) of a given time series data. The PFD is a measure of the
irregularity or self-similarity of a time series. Larger values indicate higher complexity. Lower values indicate lower complexity.
:parameter np.ndarray data: A 1-dimensional numpy array containing the time series data.
:returns float: The Petrosian Fractal Dimension of the input time series.
.. note::
- The PFD is computed based on the number of sign changes in the first derivative of the time series.
- If the input data is empty or no sign changes are found, the PFD is returned as -1.0.
- Adapted from `eeglib <https://github.com/Xiul109/eeglib/>`_.
.. math::
PFD = \\frac{\\log_{10}(N)}{\\log_{10}(N) + \\log_{10}\\left(\\frac{N}{N + 0.4 \\cdot zC}\\right)}
:examples:
>>> t = np.linspace(0, 50, int(44100 * 2.0), endpoint=False)
>>> sine_wave = 1.0 * np.sin(2 * np.pi * 1.0 * t).astype(np.float32)
>>> TimeseriesFeatureMixin().petrosian_fractal_dimension(data=sine_wave)
>>> 1.0000398187022719
>>> np.random.shuffle(sine_wave)
>>> TimeseriesFeatureMixin().petrosian_fractal_dimension(data=sine_wave)
>>> 1.0211625348743218
"""

data = (data - np.min(data)) / (np.max(data) - np.min(data))
derivative = data[1:] - data[:-1]
zC = TimeseriesFeatureMixin().crossings(data=derivative, val=0.0)
if data.shape[0] == 0 or zC == 0:
return -1.0

return np.log10(data.shape[0]) / (
np.log10(data.shape[0]) + np.log10(data.shape[0] / (data.shape[0] + 0.4 * zC)))

@staticmethod
@njit('(float32[:], int64)')
def higuchi_fractal_dimension(data: np.ndarray, kmax: int = 10):
"""
Jitted compute of the Higuchi Fractal Dimension of a given time series data. The Higuchi Fractal Dimension provides a measure of the fractal
complexity of a time series.
The maximum value of k used in the calculation. Increasing kmax considers longer sequences
of data, providing a more detailed analysis of fractal complexity. Default is 10.
:parameter np.ndarray data: A 1-dimensional numpy array containing the time series data.
:parameter int kmax: The maximum value of k used in the calculation. Increasing kmax considers longer sequences of data, providing a more detailed analysis of fractal complexity. Default is 10.
:returns float: The Higuchi Fractal Dimension of the input time series.
.. note::
- Adapted from `eeglib <https://github.com/Xiul109/eeglib/>`_.
.. math::
HFD = \\frac{\\log(N)}{\\log(N) + \\log\\left(\\frac{N}{N + 0.4 \\cdot zC}\\right)}
:example:
>>> t = np.linspace(0, 50, int(44100 * 2.0), endpoint=False)
>>> sine_wave = 1.0 * np.sin(2 * np.pi * 1.0 * t).astype(np.float32)
>>> sine_wave = (sine_wave - np.min(sine_wave)) / (np.max(sine_wave) - np.min(sine_wave))
>>> TimeseriesFeatureMixin().higuchi_fractal_dimension(data=data, kmax=10)
>>> 1.0001506805419922
>>> np.random.shuffle(sine_wave)
>>> TimeseriesFeatureMixin().higuchi_fractal_dimension(data=data, kmax=10)
>>> 1.9996402263641357
"""

L, N = np.zeros(kmax - 1), len(data)
x = np.hstack((-np.log(np.arange(2, kmax + 1)).reshape(-1, 1).astype(np.float32),
np.ones(kmax - 1).reshape(-1, 1).astype(np.float32)))
for k in prange(2, kmax + 1):
Lk = np.zeros(k)
for m in range(0, k):
Lmk = 0
for i in range(1, (N - m) // k):
Lmk += abs(data[m + i * k] - data[m + i * k - k])
Lk[m] = Lmk * (N - 1) / (((N - m) // k) * k * k)
Laux = np.mean(Lk)
Laux = 0.01 / k if Laux == 0 else Laux
L[k - 2] = np.log(Laux)

return np.linalg.lstsq(x, L.astype(np.float32))[0][0]

0 comments on commit 50192b5

Please sign in to comment.