-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
294 lines (286 loc) · 12.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import tensorflow as tf
import numpy as np
import miditoolkit
import modules
import pickle
import utils
import time
class PopMusicTransformer(object):
########################################
# initialize
########################################
def __init__(self, checkpoint, is_training=False):
# load dictionary
self.dictionary_path = '{}/dictionary.pkl'.format(checkpoint)
self.event2word, self.word2event = pickle.load(open(self.dictionary_path, 'rb'))
# model settings
self.x_len = 512
self.mem_len = 512
self.n_layer = 12
self.d_embed = 512
self.d_model = 512
self.dropout = 0.1
self.n_head = 8
self.d_head = self.d_model // self.n_head
self.d_ff = 2048
self.n_token = len(self.event2word)
self.learning_rate = 0.0002
# load model
self.is_training = is_training
if self.is_training:
self.batch_size = 4
else:
self.batch_size = 1
self.checkpoint_path = '{}/model'.format(checkpoint)
self.load_model()
########################################
# load model
########################################
def load_model(self):
# placeholders
self.x = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
self.y = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
self.mems_i = [tf.compat.v1.placeholder(tf.float32, [self.mem_len, self.batch_size, self.d_model]) for _ in range(self.n_layer)]
# model
self.global_step = tf.compat.v1.train.get_or_create_global_step()
initializer = tf.compat.v1.initializers.random_normal(stddev=0.02, seed=None)
proj_initializer = tf.compat.v1.initializers.random_normal(stddev=0.01, seed=None)
with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()):
xx = tf.transpose(self.x, [1, 0])
yy = tf.transpose(self.y, [1, 0])
loss, self.logits, self.new_mem = modules.transformer(
dec_inp=xx,
target=yy,
mems=self.mems_i,
n_token=self.n_token,
n_layer=self.n_layer,
d_model=self.d_model,
d_embed=self.d_embed,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_ff,
dropout=self.dropout,
dropatt=self.dropout,
initializer=initializer,
proj_initializer=proj_initializer,
is_training=self.is_training,
mem_len=self.mem_len,
cutoffs=[],
div_val=-1,
tie_projs=[],
same_length=False,
clamp_len=-1,
input_perms=None,
target_perms=None,
head_target=None,
untie_r=False,
proj_same_dim=True)
self.avg_loss = tf.reduce_mean(loss)
# vars
all_vars = tf.compat.v1.trainable_variables()
grads = tf.gradients(self.avg_loss, all_vars)
grads_and_vars = list(zip(grads, all_vars))
all_trainable_vars = tf.reduce_sum([tf.reduce_prod(v.shape) for v in tf.compat.v1.trainable_variables()])
# optimizer
decay_lr = tf.compat.v1.train.cosine_decay(
self.learning_rate,
global_step=self.global_step,
decay_steps=400000,
alpha=0.004)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=decay_lr)
self.train_op = optimizer.apply_gradients(grads_and_vars, self.global_step)
# saver
self.saver = tf.compat.v1.train.Saver()
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.compat.v1.Session(config=config)
self.saver.restore(self.sess, self.checkpoint_path)
########################################
# temperature sampling
########################################
def temperature_sampling(self, logits, temperature, topk):
probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature))
if topk == 1:
prediction = np.argmax(probs)
else:
sorted_index = np.argsort(probs)[::-1]
candi_index = sorted_index[:topk]
candi_probs = [probs[i] for i in candi_index]
# normalize probs
candi_probs /= sum(candi_probs)
# choose by predicted probs
prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0]
return prediction
########################################
# extract events for prompt continuation
########################################
def extract_events(self, input_path):
note_items, tempo_items = utils.read_items(input_path)
note_items = utils.quantize_items(note_items)
max_time = note_items[-1].end
if 'chord' in self.checkpoint_path:
chord_items = utils.extract_chords(note_items)
items = chord_items + tempo_items + note_items
else:
items = tempo_items + note_items
groups = utils.group_items(items, max_time)
events = utils.item2event(groups)
return events
########################################
# generate
########################################
def generate(self, n_target_bar, temperature, topk, output_path, prompt=None):
# if prompt, load it. Or, random start
if prompt:
events = self.extract_events(prompt)
words = [[self.event2word['{}_{}'.format(e.name, e.value)] for e in events]]
words[0].append(self.event2word['Bar_None'])
else:
words = []
for _ in range(self.batch_size):
ws = [self.event2word['Bar_None']]
if 'chord' in self.checkpoint_path:
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
chords = [v for k, v in self.event2word.items() if 'Chord' in k]
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(chords))
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(tempo_classes))
ws.append(np.random.choice(tempo_values))
else:
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(tempo_classes))
ws.append(np.random.choice(tempo_values))
words.append(ws)
# initialize mem
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
# generate
original_length = len(words[0])
initial_flag = 1
current_generated_bar = 0
while current_generated_bar < n_target_bar:
# input
if initial_flag:
temp_x = np.zeros((self.batch_size, original_length))
for b in range(self.batch_size):
for z, t in enumerate(words[b]):
temp_x[b][z] = t
initial_flag = 0
else:
temp_x = np.zeros((self.batch_size, 1))
for b in range(self.batch_size):
temp_x[b][0] = words[b][-1]
# prepare feed dict
feed_dict = {self.x: temp_x}
for m, m_np in zip(self.mems_i, batch_m):
feed_dict[m] = m_np
# model (prediction)
_logits, _new_mem = self.sess.run([self.logits, self.new_mem], feed_dict=feed_dict)
# sampling
_logit = _logits[-1, 0]
word = self.temperature_sampling(
logits=_logit,
temperature=temperature,
topk=topk)
words[0].append(word)
# if bar event (only work for batch_size=1)
if word == self.event2word['Bar_None']:
current_generated_bar += 1
# re-new mem
batch_m = _new_mem
# write
if prompt:
utils.write_midi(
words=words[0][original_length:],
word2event=self.word2event,
output_path=output_path,
prompt_path=prompt)
else:
utils.write_midi(
words=words[0],
word2event=self.word2event,
output_path=output_path,
prompt_path=None)
########################################
# prepare training data
########################################
def prepare_data(self, midi_paths):
# extract events
all_events = []
for path in midi_paths:
events = self.extract_events(path)
all_events.append(events)
# event to word
all_words = []
for events in all_events:
words = []
for event in events:
e = '{}_{}'.format(event.name, event.value)
if e in self.event2word:
words.append(self.event2word[e])
else:
# OOV
if event.name == 'Note Velocity':
# replace with max velocity based on our training data
words.append(self.event2word['Note Velocity_21'])
else:
# something is wrong
# you should handle it for your own purpose
print('something is wrong! {}'.format(e))
all_words.append(words)
# to training data
self.group_size = 5
segments = []
for words in all_words:
pairs = []
for i in range(0, len(words)-self.x_len-1, self.x_len):
x = words[i:i+self.x_len]
y = words[i+1:i+self.x_len+1]
pairs.append([x, y])
pairs = np.array(pairs)
# abandon the last
for i in np.arange(0, len(pairs)-self.group_size, self.group_size*2):
data = pairs[i:i+self.group_size]
if len(data) == self.group_size:
segments.append(data)
segments = np.array(segments)
return segments
########################################
# finetune
########################################
def finetune(self, training_data, output_checkpoint_folder):
# shuffle
index = np.arange(len(training_data))
np.random.shuffle(index)
training_data = training_data[index]
num_batches = len(training_data) // self.batch_size
st = time.time()
for e in range(200):
total_loss = []
for i in range(num_batches):
segments = training_data[self.batch_size*i:self.batch_size*(i+1)]
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
for j in range(self.group_size):
batch_x = segments[:, j, 0, :]
batch_y = segments[:, j, 1, :]
# prepare feed dict
feed_dict = {self.x: batch_x, self.y: batch_y}
for m, m_np in zip(self.mems_i, batch_m):
feed_dict[m] = m_np
# run
_, gs_, loss_, new_mem_ = self.sess.run([self.train_op, self.global_step, self.avg_loss, self.new_mem], feed_dict=feed_dict)
batch_m = new_mem_
total_loss.append(loss_)
print('>>> Epoch: {}, Step: {}, Loss: {:.5f}, Time: {:.2f}'.format(e, gs_, loss_, time.time()-st))
self.saver.save(self.sess, '{}/model-{:03d}-{:.3f}'.format(output_checkpoint_folder, e, np.mean(total_loss)))
# stop
if np.mean(total_loss) <= 0.1:
break
########################################
# close
########################################
def close(self):
self.sess.close()