forked from THU-KEG/EAkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
403 lines (346 loc) · 21.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
File name: run.py
Author: locke
Date created: 2020/3/25 下午6:58
"""
import time
import argparse
import os
import gc
import random
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from load_data import *
from models import *
from utils import *
from semi_utils import bootstrapping, boot_update_triple
from torch.utils.tensorboard import SummaryWriter
import logging
class Experiment:
def __init__(self, args):
self.save = args.save
self.save_prefix = "%s_%s" % (args.data_dir.split("/")[-1], args.log)
self.hiddens = list(map(int, args.hiddens.split(",")))
self.heads = list(map(int, args.heads.split(",")))
self.args = args
self.args.encoder = args.encoder.lower()
self.args.decoder = args.decoder.lower().split(",")
self.args.sampling = args.sampling.split(",")
self.args.k = list(map(int, args.k.split(",")))
self.args.margin = [float(x) if "-" not in x else list(map(float, x.split("-"))) for x in args.margin.split(",")]
self.args.alpha = list(map(float, args.alpha.split(",")))
assert len(self.args.decoder) >= 1
assert len(self.args.decoder) == len(self.args.sampling) and \
len(self.args.sampling) == len(self.args.k) and \
len(self.args.k) == len(self.args.alpha)
self.cached_sample = {}
self.best_result = ()
def evaluate(self, it, test, ins_emb, mapping_emb=None):
t_test = time.time()
top_k = [1, 3, 5, 10]
if mapping_emb is not None:
logger.info("using mapping")
left_emb = mapping_emb[test[:, 0]]
else:
left_emb = ins_emb[test[:, 0]]
right_emb = ins_emb[test[:, 1]]
distance = - sim(left_emb, right_emb, metric=self.args.test_dist, normalize=True, csls_k=self.args.csls)
if self.args.rerank:
indices = np.argsort(np.argsort(distance, axis=1), axis=1)
indices_ = np.argsort(np.argsort(distance.T, axis=1), axis=1)
distance = indices + indices_.T
tasks = div_list(np.array(range(len(test))), 10)
pool = multiprocessing.Pool(processes=len(tasks))
reses = list()
for task in tasks:
reses.append(pool.apply_async(multi_cal_rank, (task, distance[task, :], distance[:, task], top_k, self.args)))
pool.close()
pool.join()
acc_l2r, acc_r2l = np.array([0.] * len(top_k)), np.array([0.] * len(top_k))
mean_l2r, mean_r2l, mrr_l2r, mrr_r2l = 0., 0., 0., 0.
for res in reses:
(_acc_l2r, _mean_l2r, _mrr_l2r, _acc_r2l, _mean_r2l, _mrr_r2l) = res.get()
acc_l2r += _acc_l2r
mean_l2r += _mean_l2r
mrr_l2r += _mrr_l2r
acc_r2l += _acc_r2l
mean_r2l += _mean_r2l
mrr_r2l += _mrr_r2l
mean_l2r /= len(test)
mean_r2l /= len(test)
mrr_l2r /= len(test)
mrr_r2l /= len(test)
for i in range(len(top_k)):
acc_l2r[i] = round(acc_l2r[i] / len(test), 4)
acc_r2l[i] = round(acc_r2l[i] / len(test), 4)
logger.info("l2r: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s ".format(top_k, acc_l2r.tolist(), mean_l2r, mrr_l2r, time.time() - t_test))
logger.info("r2l: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s \n".format(top_k, acc_r2l.tolist(), mean_r2l, mrr_r2l, time.time() - t_test))
for i, k in enumerate(top_k):
writer.add_scalar("l2r_HitsAt{}".format(k), acc_l2r[i], it)
writer.add_scalar("r2l_HitsAt{}".format(k), acc_r2l[i], it)
writer.add_scalar("l2r_MeanRank", mean_l2r, it)
writer.add_scalar("l2r_MeanReciprocalRank", mrr_l2r, it)
writer.add_scalar("r2l_MeanRank", mean_r2l, it)
writer.add_scalar("r2l_MeanReciprocalRank", mrr_r2l, it)
return (acc_l2r, mean_l2r, mrr_l2r, acc_r2l, mean_r2l, mrr_r2l)
def init_emb(self):
e_scale, r_scale = 1, 1
if not self.args.encoder:
if self.args.decoder == ["rotate"]:
r_scale = r_scale / 2
elif self.args.decoder == ["hake"]:
r_scale = (r_scale / 2) * 3
elif self.args.decoder == ["transh"]:
r_scale = r_scale * 2
elif self.args.decoder == ["transr"]:
r_scale = self.hiddens[0] + 1
self.ins_embeddings = nn.Embedding(d.ins_num, self.hiddens[0] * e_scale).to(device)
self.rel_embeddings = nn.Embedding(d.rel_num, int(self.hiddens[0] * r_scale)).to(device)
if self.args.decoder == ["rotate"] or self.args.decoder == ["hake"]:
ins_range = (self.args.margin[0] + 2.0) / float(self.hiddens[0] * e_scale)
nn.init.uniform_(tensor=self.ins_embeddings.weight, a=-ins_range, b=ins_range)
rel_range = (self.args.margin[0] + 2.0) / float(self.hiddens[0] * r_scale)
nn.init.uniform_(tensor=self.rel_embeddings.weight, a=-rel_range, b=rel_range)
if self.args.decoder == ["hake"]:
r_dim = int(self.hiddens[0] / 2)
nn.init.ones_(tensor=self.rel_embeddings.weight[:, r_dim : 2*r_dim])
nn.init.zeros_(tensor=self.rel_embeddings.weight[:, 2*r_dim : 3*r_dim])
else:
nn.init.xavier_normal_(self.ins_embeddings.weight)
nn.init.xavier_normal_(self.rel_embeddings.weight)
if "alignea" in self.args.decoder or "mtranse_align" in self.args.decoder or "transedge" in self.args.decoder:
self.ins_embeddings.weight.data = F.normalize(self.ins_embeddings.weight, p=2, dim=1)
self.rel_embeddings.weight.data = F.normalize(self.rel_embeddings.weight, p=2, dim=1)
elif "transr" in self.args.decoder:
assert self.args.pre != ""
self.ins_embeddings.weight.data = torch.from_numpy(np.load(self.args.pre+"_ins.npy")).to(device)
self.rel_embeddings.weight[:, :self.hiddens[0]].data = torch.from_numpy(np.load(self.args.pre+"_rel.npy")).to(device)
self.enh_ins_emb = self.ins_embeddings.weight.cpu().detach().numpy()
self.mapping_ins_emb = None
def train_and_eval(self):
self.init_emb()
graph_encoder = None
if self.args.encoder:
graph_encoder = Encoder(self.args.encoder, self.hiddens, self.heads+[1], activation=F.elu, feat_drop=self.args.feat_drop, attn_drop=self.args.attn_drop, negative_slope=0.2, bias=False).to(device)
logger.info(graph_encoder)
knowledge_decoder = []
for idx, decoder_name in enumerate(self.args.decoder):
knowledge_decoder.append(Decoder(decoder_name, params={
"e_num": d.ins_num,
"r_num": d.rel_num,
"dim": self.hiddens[-1],
"feat_drop": self.args.feat_drop,
"train_dist": self.args.train_dist,
"sampling": self.args.sampling[idx],
"k": self.args.k[idx],
"margin": self.args.margin[idx],
"alpha": self.args.alpha[idx],
"boot": self.args.bootstrap,
# pass other useful parameters to Decoder
}).to(device))
logger.info(knowledge_decoder)
params = nn.ParameterList([self.ins_embeddings.weight, self.rel_embeddings.weight] + [p for k_d in knowledge_decoder for p in list(k_d.parameters())] + (list(graph_encoder.parameters()) if self.args.encoder else []))
opt = optim.Adagrad(params, lr=self.args.lr, weight_decay=self.args.wd)
if self.args.dr:
scheduler = optim.lr_scheduler.ExponentialLR(opt, self.args.dr)
logger.info(params)
logger.info(opt)
# Train
logger.info("Start training...")
for it in range(0, self.args.epoch):
for idx, k_d in enumerate(knowledge_decoder):
if (k_d.name == "align" and len(d.ill_train_idx) == 0):
continue
t_ = time.time()
if k_d.print_name.startswith("["): # Run Independent Model (only decoder)
loss = self.train_1_epoch(it, opt, None, k_d, d.ins_G_edges_idx, d.triple_idx, d.ill_train_idx, [d.kg1_ins_ids, d.kg2_ins_ids], d.boot_triple_idx, d.boot_pair_dix, self.ins_embeddings.weight, self.rel_embeddings.weight)
else: # Run Basic Model (encoder - decoder)
loss = self.train_1_epoch(it, opt, graph_encoder, k_d, d.ins_G_edges_idx, d.triple_idx, d.ill_train_idx, [d.kg1_ins_ids, d.kg2_ins_ids], d.boot_triple_idx, d.boot_pair_dix, self.ins_embeddings.weight, self.rel_embeddings.weight)
if hasattr(k_d, "mapping"):
self.mapping_ins_emb = k_d.mapping(self.ins_embeddings.weight).cpu().detach().numpy()
loss_name = "loss_" + k_d.print_name.replace("[", "_").replace("]", "_")
writer.add_scalar(loss_name, loss, it)
logger.info("epoch: %d\t%s: %.8f\ttime: %ds" % (it, loss_name, loss, int(time.time()-t_)) )
if self.args.dr:
scheduler.step()
# Evaluate
if (it + 1) % self.args.check == 0:
logger.info("Start validating...")
with torch.no_grad():
if graph_encoder and graph_encoder.name == "naea":
beta = self.args.margin[-1]
emb = beta * self.enh_ins_emb + (1 - beta) * self.ins_embeddings.weight.cpu().detach().numpy()
else:
emb = self.enh_ins_emb
if len(d.ill_val_idx) > 0:
result = self.evaluate(it, d.ill_val_idx, emb, self.mapping_ins_emb)
else:
result = self.evaluate(it, d.ill_test_idx, emb, self.mapping_ins_emb)
# Early Stop
if self.args.early and len(self.best_result) != 0 and result[0][0] < self.best_result[0][0]:
if len(d.ill_val_idx) > 0:
logger.info("Start testing...")
self.evaluate(it, d.ill_test_idx, emb, self.mapping_ins_emb)
else:
logger.info("Early stop, best result:")
acc_l2r, mean_l2r, mrr_l2r, acc_r2l, mean_r2l, mrr_r2l = self.best_result
logger.info("l2r: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f} ".format(top_k, acc_l2r, mean_l2r, mrr_l2r))
logger.info("r2l: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f} \n".format(top_k, acc_r2l, mean_r2l, mrr_r2l))
break
self.best_result = result
# Bootstrapping
if self.args.bootstrap and it >= self.args.start_bp and (it + 1) % self.args.update == 0:
with torch.no_grad():
if graph_encoder and graph_encoder.name == "naea":
beta = self.args.margin[-1]
emb = beta * self.enh_ins_emb + (1 - beta) * self.ins_embeddings.weight.cpu().detach().numpy()
else:
emb = self.enh_ins_emb
d.labeled_alignment, A, B = bootstrapping(ref_sim_mat=sim(emb[d.ill_test_idx[:, 0]], emb[d.ill_test_idx[:, 1]], metric=self.args.test_dist, normalize=True, csls_k=0),
ref_ent1=d.ill_test_idx[:, 0].tolist(),
ref_ent2=d.ill_test_idx[:, 1].tolist(),
labeled_alignment=d.labeled_alignment, th=self.args.threshold, top_k=10, is_edit=False)
if d.labeled_alignment:
d.boot_triple_idx = boot_update_triple(A, B, d.triple_idx)
d.boot_pair_dix = [(A[i], B[i])for i in range(len(A))]
logger.info("Bootstrapping: + " + str(len(A)) + " ills, " + str(len(d.boot_triple_idx)) + " triples.")
# Save Embeddings
if self.save != "":
if not os.path.exists(self.save):
os.makedirs(self.save)
time_str = self.save_prefix + "_" + time.strftime("%Y%m%d-%H%M", time.gmtime())
if graph_encoder:
with torch.no_grad():
graph_encoder.eval()
edges = torch.LongTensor(d.ins_G_edges_idx).to(device)
enh_emb = graph_encoder(edges, self.ins_embeddings.weight)
np.save(self.save + "/%s_enh_ins.npy" % (time_str), enh_emb.cpu().detach().numpy())
np.save(self.save + "/%s_ins.npy" % (time_str), self.ins_embeddings.weight.cpu().detach().numpy())
np.save(self.save + "/%s_rel.npy" % (time_str), self.rel_embeddings.weight.cpu().detach().numpy())
logger.info("Embeddings saved!")
def train_1_epoch(self, it, opt, encoder, decoder, edges, triples, ills, ids, boot_triples, boot_pairs, ins_emb, rel_emb):
if encoder:
encoder.train()
decoder.train()
losses = []
if "pos_"+decoder.print_name not in self.cached_sample or it % self.args.update == 0:
if decoder.name in ["align", "mtranse_align", "n_r_align"]:
if decoder.boot:
self.cached_sample["pos_"+decoder.print_name] = ills.tolist() + boot_pairs
else:
self.cached_sample["pos_"+decoder.print_name] = ills.tolist()
self.cached_sample["pos_"+decoder.print_name] = np.array(self.cached_sample["pos_"+decoder.print_name])
else:
if decoder.boot:
self.cached_sample["pos_"+decoder.print_name] = triples + boot_triples
else:
self.cached_sample["pos_"+decoder.print_name] = triples
np.random.shuffle(self.cached_sample["pos_"+decoder.print_name])
# print("train size:", len(self.cached_sample["pos_"+decoder.print_name]))
train = self.cached_sample["pos_"+decoder.print_name]
if self.args.train_batch_size == -1:
train_batch_size = len(train)
else:
train_batch_size = self.args.train_batch_size
for i in range(0, len(train), train_batch_size):
pos_batch = train[i:i+train_batch_size]
if (decoder.print_name+str(i) not in self.cached_sample or it % self.args.update == 0) and decoder.sampling_method:
self.cached_sample[decoder.print_name+str(i)] = decoder.sampling_method(pos_batch, triples, ills, ids, decoder.k, params={
"emb": self.enh_ins_emb,
"metric": self.args.test_dist,
})
if decoder.sampling_method:
neg_batch = self.cached_sample[decoder.print_name+str(i)]
opt.zero_grad()
if decoder.sampling_method:
neg = torch.LongTensor(neg_batch).to(device)
if neg.size(0) > len(pos_batch) * decoder.k:
pos = torch.LongTensor(pos_batch).repeat(decoder.k * 2, 1).to(device)
elif hasattr(decoder.func, "loss") and decoder.name not in ["rotate", "hake", "conve", "mmea", "n_transe"]:
pos = torch.LongTensor(pos_batch).to(device)
else:
pos = torch.LongTensor(pos_batch).repeat(decoder.k, 1).to(device)
else:
pos = torch.LongTensor(pos_batch).to(device)
if encoder:
use_edges = torch.LongTensor(edges).to(device)
enh_emb = encoder.forward(use_edges, ins_emb, rel_emb[d.r_ij_idx] if encoder.name=="naea" else None)
else:
enh_emb = ins_emb
self.enh_ins_emb = enh_emb[0].cpu().detach().numpy() if encoder and encoder.name == "naea" else enh_emb.cpu().detach().numpy()
if decoder.name == "n_r_align":
rel_emb = ins_emb
if decoder.sampling_method:
pos_score = decoder.forward(enh_emb, rel_emb, pos)
neg_score = decoder.forward(enh_emb, rel_emb, neg)
target = torch.ones(neg_score.size()).to(device)
loss = decoder.loss(pos_score, neg_score, target) * decoder.alpha
else:
loss = decoder.forward(enh_emb, rel_emb, pos) * decoder.alpha
loss.backward()
opt.step()
losses.append(loss.item())
return np.mean(losses)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/DBP15K/zh_en", required=False, help="input dataset file directory, ('data/DBP15K/zh_en', 'data/DWY100K/dbp_wd')")
parser.add_argument("--rate", type=float, default=0.3, help="training set rate")
parser.add_argument("--val", type=float, default=0.0, help="valid set rate")
parser.add_argument("--save", default="", help="the output dictionary of the model and embedding")
parser.add_argument("--pre", default="", help="pre-train embedding dir (only use in transr)")
parser.add_argument("--cuda", action="store_true", default=True, help="whether to use cuda or not")
parser.add_argument("--log", type=str, default="tensorboard_log", nargs="?", help="where to save the log")
parser.add_argument("--seed", type=int, default=2020, help="random seed")
parser.add_argument("--epoch", type=int, default=1000, help="number of epochs to train")
parser.add_argument("--check", type=int, default=5, help="check point")
parser.add_argument("--update", type=int, default=5, help="number of epoch for updating negtive samples")
parser.add_argument("--train_batch_size", type=int, default=-1, help="train batch_size (-1 means all in)")
parser.add_argument("--early", action="store_true", default=False, help="whether to use early stop") # Early stop when the Hits@1 score begins to drop on the validation sets, checked every 10 epochs.
parser.add_argument("--share", action="store_true", default=False, help="whether to share ill emb")
parser.add_argument("--swap", action="store_true", default=False, help="whether to swap ill in triple")
parser.add_argument("--bootstrap", action="store_true", default=False, help="whether to use bootstrap")
parser.add_argument("--start_bp", type=int, default=9, help="epoch of starting bootstrapping")
parser.add_argument("--threshold", type=float, default=0.75, help="threshold of bootstrap alignment")
parser.add_argument("--encoder", type=str, default="GCN-Align", nargs="?", help="which encoder to use: . max = 1")
parser.add_argument("--hiddens", type=str, default="100,100,100", help="hidden units in each hidden layer(including in_dim and out_dim), splitted with comma")
parser.add_argument("--heads", type=str, default="1,1", help="heads in each gat layer, splitted with comma")
parser.add_argument("--attn_drop", type=float, default=0, help="dropout rate for gat layers")
parser.add_argument("--decoder", type=str, default="Align", nargs="?", help="which decoder to use: . min = 1")
parser.add_argument("--sampling", type=str, default="N", help="negtive sampling method for each decoder")
parser.add_argument("--k", type=str, default="25", help="negtive sampling number for each decoder")
parser.add_argument("--margin", type=str, default="1", help="margin for each margin based ranking loss (or params for other loss function)")
parser.add_argument("--alpha", type=str, default="1", help="weight for each margin based ranking loss")
parser.add_argument("--feat_drop", type=float, default=0, help="dropout rate for layers")
parser.add_argument("--lr", type=float, default=0.005, help="initial learning rate")
parser.add_argument("--wd", type=float, default=0, help="weight decay (L2 loss on parameters)")
parser.add_argument("--dr", type=float, default=0, help="decay rate of lr")
parser.add_argument("--train_dist", type=str, default="euclidean", help="distance function used in train (inner, cosine, euclidean, manhattan)")
parser.add_argument("--test_dist", type=str, default="euclidean", help="distance function used in test (inner, cosine, euclidean, manhattan)")
parser.add_argument("--csls", type=int, default=0, help="whether to use csls in test (0 means not using)")
parser.add_argument("--rerank", action="store_true", default=False, help="whether to use rerank in test")
args = parser.parse_args()
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s")
writer = SummaryWriter("_runs/%s_%s" % (args.data_dir.split("/")[-1], args.log))
logger.info(args)
torch.backends.cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda and torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda and torch.cuda.is_available() else "cpu")
# Load Data
d = AlignmentData(data_dir=args.data_dir, rate=args.rate, share=args.share, swap=args.swap, val=args.val, with_r=args.encoder.lower()=="naea")
logger.info(d)
experiment = Experiment(args=args)
t_total = time.time()
experiment.train_and_eval()
logger.info("optimization finished!")
logger.info("total time elapsed: {:.4f} s".format(time.time() - t_total))