forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChanelShuffle.cpp
93 lines (82 loc) · 3.37 KB
/
ChanelShuffle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/NamedTensorUtils.h>
#if defined(C10_MOBILE) && defined(USE_XNNPACK)
#include <ATen/native/xnnpack/Engine.h>
#endif
#include <c10/util/Exception.h>
#include <ATen/native/cpu/ChannelShuffleKernel.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/channel_shuffle_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/native_channel_shuffle.h>
#include <ATen/ops/native_channel_shuffle_native.h>
#endif
namespace at::native {
Tensor channel_shuffle_cpu(const Tensor& self, int64_t groups) {
Tensor output;
if (self.numel() == 0) {
output = self.alias();
} else {
auto memory_format = self.suggest_memory_format();
output = at::empty({0}, self.options());
output.resize_(self.sizes(), memory_format);
auto input = self.contiguous(memory_format);
channel_shuffle_kernel(kCPU, output, input, groups);
}
return namedinference::propagate_names_if_nonempty(
output,
self.has_names() ? self.names() : at::ArrayRef<Dimname>{});
}
Tensor channel_shuffle(const Tensor& self, int64_t groups) {
TORCH_CHECK(self.dim() > 2,
"channel_shuffle expects input with > 2 dims, but got input with sizes ",
self.sizes());
int64_t c = self.size(1);
TORCH_CHECK(groups > 0,
"Number of groups to divide channels in must be positive.",
" Value of groups:", groups);
TORCH_CHECK((c % groups) == 0,
"Number of channels must be divisible by groups. Got ",
c, " channels and ", groups, " groups.");
#if defined(C10_MOBILE) && defined(USE_XNNPACK)
if (self.is_contiguous(MemoryFormat::ChannelsLast) &&
xnnpack::use_channel_shuffle(self, groups)) {
auto output = self.numel() == 0 ? self.alias() : xnnpack::channel_shuffle(self, groups);
return output;
}
#endif
auto output = self.numel() == 0 ? self.alias() : at::native_channel_shuffle(self, groups);
return namedinference::propagate_names_if_nonempty(
output,
self.has_names() ? self.names() : at::ArrayRef<Dimname>{});
}
Tensor math_channel_shuffle(const Tensor& self, int64_t groups) {
int64_t b = self.size(0);
int64_t c = self.size(1);
int64_t oc = c / groups;
auto input_reshaped = self.view({b, groups, oc, -1});
// TODO: contiguous can be made to preserve the memory format
// of the input. However since the above reshape clobbers h and w
// it may not be safe to do that, since channels_last contiguous
// may think oc and and the last dim correspond to h,w?
// It is not clear, however from initial looking around it feels that
// this may not be correct.
// In this case channels last will likely require custom implementation
// if we want to preserve the memory order.
// XNNPACK has channel shuffle op for NHWC. For mobile usecase this is good.
// For server we will have to do a custom implementation.
// For ChannelsFirst, a.k.a Contiguous, memory format we will also need
// a fast custom implementation perhaps.
Tensor output_tensor =
input_reshaped.permute({0 /* b */, 2 /* oc */, 1 /* groups */, 3})
.contiguous()
.reshape(self.sizes());
return namedinference::propagate_names_if_nonempty(
output_tensor,
self.has_names() ? self.names() : at::ArrayRef<Dimname>{});
}
DEFINE_DISPATCH(channel_shuffle_kernel);
} // namespace at::native