-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlma_survival.R
88 lines (67 loc) · 2.85 KB
/
lma_survival.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# LMA Survival
library(tidyverse)
library(ggplot2)
library(RJDBC)
library(lubridate)
# libraries for databases and SQL...
source('~/db_connection_tools.R')
con <- redshift_connect(yaml_file = 'config.yml')
query <- getSQL(filepath = 'page_loads.sql')
df_raw <- dbGetQuery(conn = con, statement = query)
t <- today()
# number of days to cap the histogram at
cap_value <- 5
df <- df_raw %>%
mutate(month = month(first_visit)) %>%
mutate(max_bin = case_when(total_lifetime >= cap_value ~ cap_value,
TRUE ~ total_lifetime)) %>%
mutate(zero_days = case_when(total_lifetime >= 1 ~ 1,
TRUE ~ total_lifetime)) %>%
# Remove current_month
filter(month != month(t))
# Make a histogram of how many days people stick around
p1 <- ggplot(data = df, aes(x = max_bin)) +
geom_histogram(bins = 100) +
facet_wrap(facets = ~ month, scales=("free_y")) +
ggtitle(label = 'LMA days between first and last visit',
subtitle = paste('lifetime capped at', cap_value, 'days'))
# Show count of page loads
p2 <- ggplot(data = df, aes(x = page_loads)) +
geom_histogram(bins = 50) +
facet_wrap(facets = ~ month, scales=("free_y")) +
ggtitle(label = 'Histogram of page loads by user_id',
subtitle = 'faceted by first visit month') +
xlim(c(0,25))
ggsave(filename = paste0('~/Projects/ad_hoc/lma_survival/img/lifetime_', t, '.png'), plot = p1,
width = 8, height = 6)
ggsave(filename = paste0('~/Projects/ad_hoc/lma_survival/img/pageloads_', t, '.png'), plot = p2,
width = 8, height = 6)
# some renaming for writing nice stuff to CSV output
df_write <- df %>%
mutate(sign_up_month = month) %>%
select(-c(max_bin, zero_days, month))
write.table(x = df_write,
file = paste0('lma_engagement_population', t, '.csv'),
sep = "|",
row.names = FALSE)
# ---------------------------- #
# Get distinct users over time
# ---------------------------- #
query <- getSQL(filepath = 'sql/distinct_users_over_time.sql')
df_raw <- dbGetQuery(conn = con, statement = query)
df <- df_raw %>%
mutate(dt = ymd(dt))
p3 <- ggplot(data = df, aes(x = dt, y = distinct_anon_ids)) +
geom_line() +
geom_smooth() +
ggtitle(label = 'Distinct Anonymous IDs per day w/ Loess smoothing',
subtitle = paste0('LMA launch to ', t))
p4 <- ggplot(data = df, aes(x = dt, y = distinct_users)) +
geom_line() +
geom_smooth() +
ggtitle(label = 'Distinct User IDs per day w/ Loess smoothing',
subtitle = paste0('LMA launch to ', t))
ggsave(filename = paste0('~/Projects/ad_hoc/lma_survival/img/anon_ids_per_day_', t, '.png'),
plot = p3, width = 8, height = 6)
ggsave(filename = paste0('~/Projects/ad_hoc/lma_survival/img/user_ids_per_day_', t, '.png'),
plot = p4, width = 8, height = 6)